L(s) = 1 | + (−1.12 − 1.95i)5-s + (2.62 − 0.349i)7-s + (−2.61 − 1.50i)11-s + 3.29i·13-s + (3.31 − 5.73i)17-s + (−0.605 + 0.349i)19-s + (1.73 − i)23-s + (−0.0520 + 0.0902i)25-s + 1.45i·29-s + (0.323 + 0.186i)31-s + (−3.64 − 4.73i)35-s + (−5.63 − 9.75i)37-s − 2.10·41-s − 43-s + (−3.06 − 5.30i)47-s + ⋯ |
L(s) = 1 | + (−0.505 − 0.875i)5-s + (0.991 − 0.132i)7-s + (−0.787 − 0.454i)11-s + 0.913i·13-s + (0.803 − 1.39i)17-s + (−0.138 + 0.0801i)19-s + (0.361 − 0.208i)23-s + (−0.0104 + 0.0180i)25-s + 0.270i·29-s + (0.0580 + 0.0335i)31-s + (−0.616 − 0.800i)35-s + (−0.925 − 1.60i)37-s − 0.328·41-s − 0.152·43-s + (−0.446 − 0.773i)47-s + ⋯ |
Λ(s)=(=(1512s/2ΓC(s)L(s)(−0.261+0.965i)Λ(2−s)
Λ(s)=(=(1512s/2ΓC(s+1/2)L(s)(−0.261+0.965i)Λ(1−s)
Degree: |
2 |
Conductor: |
1512
= 23⋅33⋅7
|
Sign: |
−0.261+0.965i
|
Analytic conductor: |
12.0733 |
Root analytic conductor: |
3.47467 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1512(1025,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1512, ( :1/2), −0.261+0.965i)
|
Particular Values
L(1) |
≈ |
1.350396480 |
L(21) |
≈ |
1.350396480 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+(−2.62+0.349i)T |
good | 5 | 1+(1.12+1.95i)T+(−2.5+4.33i)T2 |
| 11 | 1+(2.61+1.50i)T+(5.5+9.52i)T2 |
| 13 | 1−3.29iT−13T2 |
| 17 | 1+(−3.31+5.73i)T+(−8.5−14.7i)T2 |
| 19 | 1+(0.605−0.349i)T+(9.5−16.4i)T2 |
| 23 | 1+(−1.73+i)T+(11.5−19.9i)T2 |
| 29 | 1−1.45iT−29T2 |
| 31 | 1+(−0.323−0.186i)T+(15.5+26.8i)T2 |
| 37 | 1+(5.63+9.75i)T+(−18.5+32.0i)T2 |
| 41 | 1+2.10T+41T2 |
| 43 | 1+T+43T2 |
| 47 | 1+(3.06+5.30i)T+(−23.5+40.7i)T2 |
| 53 | 1+(0.0299+0.0173i)T+(26.5+45.8i)T2 |
| 59 | 1+(2.61−4.52i)T+(−29.5−51.0i)T2 |
| 61 | 1+(4.36−2.52i)T+(30.5−52.8i)T2 |
| 67 | 1+(−1.34+2.32i)T+(−33.5−58.0i)T2 |
| 71 | 1+10.4iT−71T2 |
| 73 | 1+(11.7+6.80i)T+(36.5+63.2i)T2 |
| 79 | 1+(−7.52−13.0i)T+(−39.5+68.4i)T2 |
| 83 | 1+6.58T+83T2 |
| 89 | 1+(7.50+12.9i)T+(−44.5+77.0i)T2 |
| 97 | 1+6.09iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.959449413188930618248781823119, −8.559873189220197939703644039925, −7.64359869397836609102769920587, −7.09870257394006704013261215559, −5.70733495156937855776799169167, −4.96323454128858322947070149510, −4.38852000963870285184725583903, −3.17777457596743787760662344427, −1.85137024260003182634226210711, −0.55142050024298411466691104180,
1.50100162175444323084200927107, 2.77728962416655073747544244017, 3.61356882510127213520200859461, 4.77044444982280116020478692238, 5.52157940096113223088287085705, 6.51737260826467438102783418485, 7.54349808816161589226465207238, 7.957919253563786325469736642871, 8.657572058512246247060385310108, 10.01274939022891581126960329242