L(s) = 1 | + (0.717 + 1.21i)2-s + (−1.08 + 2.98i)3-s + (−0.970 + 1.74i)4-s + (3.40 − 0.600i)5-s + (−4.42 + 0.818i)6-s + (1.17 − 2.02i)7-s + (−2.82 + 0.0717i)8-s + (−5.45 − 4.57i)9-s + (3.17 + 3.72i)10-s + (1.02 − 0.592i)11-s + (−4.17 − 4.80i)12-s + (−0.845 − 2.32i)13-s + (3.31 − 0.0280i)14-s + (−1.91 + 10.8i)15-s + (−2.11 − 3.39i)16-s + (1.96 − 1.65i)17-s + ⋯ |
L(s) = 1 | + (0.507 + 0.861i)2-s + (−0.628 + 1.72i)3-s + (−0.485 + 0.874i)4-s + (1.52 − 0.268i)5-s + (−1.80 + 0.334i)6-s + (0.442 − 0.767i)7-s + (−0.999 + 0.0253i)8-s + (−1.81 − 1.52i)9-s + (1.00 + 1.17i)10-s + (0.309 − 0.178i)11-s + (−1.20 − 1.38i)12-s + (−0.234 − 0.644i)13-s + (0.885 − 0.00748i)14-s + (−0.493 + 2.79i)15-s + (−0.528 − 0.848i)16-s + (0.476 − 0.400i)17-s + ⋯ |
Λ(s)=(=(152s/2ΓC(s)L(s)(−0.710−0.703i)Λ(2−s)
Λ(s)=(=(152s/2ΓC(s+1/2)L(s)(−0.710−0.703i)Λ(1−s)
Degree: |
2 |
Conductor: |
152
= 23⋅19
|
Sign: |
−0.710−0.703i
|
Analytic conductor: |
1.21372 |
Root analytic conductor: |
1.10169 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ152(101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 152, ( :1/2), −0.710−0.703i)
|
Particular Values
L(1) |
≈ |
0.519761+1.26264i |
L(21) |
≈ |
0.519761+1.26264i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.717−1.21i)T |
| 19 | 1+(2.52−3.55i)T |
good | 3 | 1+(1.08−2.98i)T+(−2.29−1.92i)T2 |
| 5 | 1+(−3.40+0.600i)T+(4.69−1.71i)T2 |
| 7 | 1+(−1.17+2.02i)T+(−3.5−6.06i)T2 |
| 11 | 1+(−1.02+0.592i)T+(5.5−9.52i)T2 |
| 13 | 1+(0.845+2.32i)T+(−9.95+8.35i)T2 |
| 17 | 1+(−1.96+1.65i)T+(2.95−16.7i)T2 |
| 23 | 1+(−0.0208+0.118i)T+(−21.6−7.86i)T2 |
| 29 | 1+(3.07−3.65i)T+(−5.03−28.5i)T2 |
| 31 | 1+(−0.669+1.15i)T+(−15.5−26.8i)T2 |
| 37 | 1−3.90iT−37T2 |
| 41 | 1+(1.30+0.474i)T+(31.4+26.3i)T2 |
| 43 | 1+(9.95−1.75i)T+(40.4−14.7i)T2 |
| 47 | 1+(2.76+2.31i)T+(8.16+46.2i)T2 |
| 53 | 1+(5.70+1.00i)T+(49.8+18.1i)T2 |
| 59 | 1+(5.32+6.34i)T+(−10.2+58.1i)T2 |
| 61 | 1+(−11.6−2.05i)T+(57.3+20.8i)T2 |
| 67 | 1+(−7.80+9.29i)T+(−11.6−65.9i)T2 |
| 71 | 1+(−0.0402−0.228i)T+(−66.7+24.2i)T2 |
| 73 | 1+(−2.45−0.891i)T+(55.9+46.9i)T2 |
| 79 | 1+(−15.4−5.61i)T+(60.5+50.7i)T2 |
| 83 | 1+(6.76+3.90i)T+(41.5+71.8i)T2 |
| 89 | 1+(6.23−2.27i)T+(68.1−57.2i)T2 |
| 97 | 1+(12.0−10.1i)T+(16.8−95.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.74254324928631614093220874876, −12.52001256002444379023047089194, −11.17664704792845860328546280480, −10.08854304653782974276332380269, −9.522636855756292317906574280709, −8.313731819752573918957579622220, −6.46979321117945320623665142007, −5.48059217358989877544623321511, −4.83229349379335417041797759175, −3.51908843454143737163675252232,
1.67923192173290987390214577763, 2.39398764082280098202128572651, 5.18031254260211879136276956720, 6.01543584827256269666832250966, 6.80499615023528836096252622358, 8.570734395818371527202153744211, 9.731307329610796789152788254309, 11.01605530314907592443102563198, 11.80644535609681155901980123675, 12.65536618591934259406933948586