L(s) = 1 | + (1.41 − 0.0756i)2-s + (−2.65 + 1.53i)3-s + (1.98 − 0.213i)4-s + (−2.25 + 1.30i)5-s + (−3.63 + 2.36i)6-s + 4.30i·7-s + (2.79 − 0.452i)8-s + (3.20 − 5.54i)9-s + (−3.08 + 2.01i)10-s − 0.349·11-s + (−4.95 + 3.61i)12-s + (0.839 − 1.45i)13-s + (0.325 + 6.07i)14-s + (3.99 − 6.92i)15-s + (3.90 − 0.850i)16-s + (0.357 + 0.618i)17-s + ⋯ |
L(s) = 1 | + (0.998 − 0.0535i)2-s + (−1.53 + 0.885i)3-s + (0.994 − 0.106i)4-s + (−1.00 + 0.582i)5-s + (−1.48 + 0.965i)6-s + 1.62i·7-s + (0.987 − 0.159i)8-s + (1.06 − 1.84i)9-s + (−0.976 + 0.635i)10-s − 0.105·11-s + (−1.42 + 1.04i)12-s + (0.232 − 0.403i)13-s + (0.0870 + 1.62i)14-s + (1.03 − 1.78i)15-s + (0.977 − 0.212i)16-s + (0.0865 + 0.149i)17-s + ⋯ |
Λ(s)=(=(152s/2ΓC(s)L(s)(−0.124−0.992i)Λ(2−s)
Λ(s)=(=(152s/2ΓC(s+1/2)L(s)(−0.124−0.992i)Λ(1−s)
Degree: |
2 |
Conductor: |
152
= 23⋅19
|
Sign: |
−0.124−0.992i
|
Analytic conductor: |
1.21372 |
Root analytic conductor: |
1.10169 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ152(107,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 152, ( :1/2), −0.124−0.992i)
|
Particular Values
L(1) |
≈ |
0.728185+0.824858i |
L(21) |
≈ |
0.728185+0.824858i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.41+0.0756i)T |
| 19 | 1+(−4.35+0.268i)T |
good | 3 | 1+(2.65−1.53i)T+(1.5−2.59i)T2 |
| 5 | 1+(2.25−1.30i)T+(2.5−4.33i)T2 |
| 7 | 1−4.30iT−7T2 |
| 11 | 1+0.349T+11T2 |
| 13 | 1+(−0.839+1.45i)T+(−6.5−11.2i)T2 |
| 17 | 1+(−0.357−0.618i)T+(−8.5+14.7i)T2 |
| 23 | 1+(1.38+0.797i)T+(11.5+19.9i)T2 |
| 29 | 1+(−0.463+0.803i)T+(−14.5−25.1i)T2 |
| 31 | 1+2.80T+31T2 |
| 37 | 1−10.2T+37T2 |
| 41 | 1+(−4.87+2.81i)T+(20.5−35.5i)T2 |
| 43 | 1+(−4.32−7.48i)T+(−21.5+37.2i)T2 |
| 47 | 1+(6.26+3.61i)T+(23.5+40.7i)T2 |
| 53 | 1+(4.73−8.20i)T+(−26.5−45.8i)T2 |
| 59 | 1+(−6.62+3.82i)T+(29.5−51.0i)T2 |
| 61 | 1+(3.46+2.00i)T+(30.5+52.8i)T2 |
| 67 | 1+(10.6+6.12i)T+(33.5+58.0i)T2 |
| 71 | 1+(5.09+8.82i)T+(−35.5+61.4i)T2 |
| 73 | 1+(−2.54−4.40i)T+(−36.5+63.2i)T2 |
| 79 | 1+(1.31+2.27i)T+(−39.5+68.4i)T2 |
| 83 | 1+4.69T+83T2 |
| 89 | 1+(−7.37−4.25i)T+(44.5+77.0i)T2 |
| 97 | 1+(−6.30+3.63i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.80542095474111825965166752800, −11.99641092731616482602312294723, −11.46242512035260745658063168735, −10.79925316258895977062719451524, −9.544399062332076676955606714897, −7.70352351658690313531356906566, −6.23225247455229623948171538106, −5.58078426714627991885852290604, −4.48518694295945119368423262262, −3.15395029256111904059506390777,
1.04175276903995945481927236818, 3.98166891084998513451631797396, 4.88996538710843593277091480487, 6.16537333575942203225387311815, 7.30305998676960456153843613085, 7.71160625671602733460123175240, 10.27772712848495111290188076587, 11.32367061408005558402984489455, 11.68058095069953966327887904194, 12.74852636901948811135346104746