L(s) = 1 | + (1.41 − 0.0756i)2-s + (−2.65 + 1.53i)3-s + (1.98 − 0.213i)4-s + (−2.25 + 1.30i)5-s + (−3.63 + 2.36i)6-s + 4.30i·7-s + (2.79 − 0.452i)8-s + (3.20 − 5.54i)9-s + (−3.08 + 2.01i)10-s − 0.349·11-s + (−4.95 + 3.61i)12-s + (0.839 − 1.45i)13-s + (0.325 + 6.07i)14-s + (3.99 − 6.92i)15-s + (3.90 − 0.850i)16-s + (0.357 + 0.618i)17-s + ⋯ |
L(s) = 1 | + (0.998 − 0.0535i)2-s + (−1.53 + 0.885i)3-s + (0.994 − 0.106i)4-s + (−1.00 + 0.582i)5-s + (−1.48 + 0.965i)6-s + 1.62i·7-s + (0.987 − 0.159i)8-s + (1.06 − 1.84i)9-s + (−0.976 + 0.635i)10-s − 0.105·11-s + (−1.42 + 1.04i)12-s + (0.232 − 0.403i)13-s + (0.0870 + 1.62i)14-s + (1.03 − 1.78i)15-s + (0.977 − 0.212i)16-s + (0.0865 + 0.149i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.124 - 0.992i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 152 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.124 - 0.992i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.728185 + 0.824858i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.728185 + 0.824858i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.41 + 0.0756i)T \) |
| 19 | \( 1 + (-4.35 + 0.268i)T \) |
good | 3 | \( 1 + (2.65 - 1.53i)T + (1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (2.25 - 1.30i)T + (2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 - 4.30iT - 7T^{2} \) |
| 11 | \( 1 + 0.349T + 11T^{2} \) |
| 13 | \( 1 + (-0.839 + 1.45i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-0.357 - 0.618i)T + (-8.5 + 14.7i)T^{2} \) |
| 23 | \( 1 + (1.38 + 0.797i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-0.463 + 0.803i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 2.80T + 31T^{2} \) |
| 37 | \( 1 - 10.2T + 37T^{2} \) |
| 41 | \( 1 + (-4.87 + 2.81i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.32 - 7.48i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (6.26 + 3.61i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (4.73 - 8.20i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-6.62 + 3.82i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (3.46 + 2.00i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (10.6 + 6.12i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (5.09 + 8.82i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-2.54 - 4.40i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (1.31 + 2.27i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 4.69T + 83T^{2} \) |
| 89 | \( 1 + (-7.37 - 4.25i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-6.30 + 3.63i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.80542095474111825965166752800, −11.99641092731616482602312294723, −11.46242512035260745658063168735, −10.79925316258895977062719451524, −9.544399062332076676955606714897, −7.70352351658690313531356906566, −6.23225247455229623948171538106, −5.58078426714627991885852290604, −4.48518694295945119368423262262, −3.15395029256111904059506390777,
1.04175276903995945481927236818, 3.98166891084998513451631797396, 4.88996538710843593277091480487, 6.16537333575942203225387311815, 7.30305998676960456153843613085, 7.71160625671602733460123175240, 10.27772712848495111290188076587, 11.32367061408005558402984489455, 11.68058095069953966327887904194, 12.74852636901948811135346104746