L(s) = 1 | + (1.14 + 0.834i)2-s + (−1.05 + 0.606i)3-s + (0.606 + 1.90i)4-s + (2.45 − 1.41i)5-s + (−1.70 − 0.184i)6-s + 0.450i·7-s + (−0.897 + 2.68i)8-s + (−0.763 + 1.32i)9-s + (3.97 + 0.429i)10-s − 2.15·11-s + (−1.79 − 1.63i)12-s + (1.86 − 3.22i)13-s + (−0.376 + 0.514i)14-s + (−1.71 + 2.97i)15-s + (−3.26 + 2.31i)16-s + (−0.716 − 1.24i)17-s + ⋯ |
L(s) = 1 | + (0.807 + 0.590i)2-s + (−0.606 + 0.350i)3-s + (0.303 + 0.952i)4-s + (1.09 − 0.632i)5-s + (−0.696 − 0.0752i)6-s + 0.170i·7-s + (−0.317 + 0.948i)8-s + (−0.254 + 0.440i)9-s + (1.25 + 0.135i)10-s − 0.651·11-s + (−0.517 − 0.471i)12-s + (0.516 − 0.895i)13-s + (−0.100 + 0.137i)14-s + (−0.443 + 0.767i)15-s + (−0.815 + 0.578i)16-s + (−0.173 − 0.301i)17-s + ⋯ |
Λ(s)=(=(152s/2ΓC(s)L(s)(0.402−0.915i)Λ(2−s)
Λ(s)=(=(152s/2ΓC(s+1/2)L(s)(0.402−0.915i)Λ(1−s)
Degree: |
2 |
Conductor: |
152
= 23⋅19
|
Sign: |
0.402−0.915i
|
Analytic conductor: |
1.21372 |
Root analytic conductor: |
1.10169 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ152(107,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 152, ( :1/2), 0.402−0.915i)
|
Particular Values
L(1) |
≈ |
1.30672+0.853290i |
L(21) |
≈ |
1.30672+0.853290i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.14−0.834i)T |
| 19 | 1+(0.0305+4.35i)T |
good | 3 | 1+(1.05−0.606i)T+(1.5−2.59i)T2 |
| 5 | 1+(−2.45+1.41i)T+(2.5−4.33i)T2 |
| 7 | 1−0.450iT−7T2 |
| 11 | 1+2.15T+11T2 |
| 13 | 1+(−1.86+3.22i)T+(−6.5−11.2i)T2 |
| 17 | 1+(0.716+1.24i)T+(−8.5+14.7i)T2 |
| 23 | 1+(−1.12−0.652i)T+(11.5+19.9i)T2 |
| 29 | 1+(−4.22+7.32i)T+(−14.5−25.1i)T2 |
| 31 | 1−0.497T+31T2 |
| 37 | 1+6.72T+37T2 |
| 41 | 1+(7.30−4.21i)T+(20.5−35.5i)T2 |
| 43 | 1+(−2.90−5.02i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−0.567−0.327i)T+(23.5+40.7i)T2 |
| 53 | 1+(3.86−6.69i)T+(−26.5−45.8i)T2 |
| 59 | 1+(12.1−6.99i)T+(29.5−51.0i)T2 |
| 61 | 1+(−2.13−1.23i)T+(30.5+52.8i)T2 |
| 67 | 1+(−2.16−1.25i)T+(33.5+58.0i)T2 |
| 71 | 1+(8.35+14.4i)T+(−35.5+61.4i)T2 |
| 73 | 1+(−8.25−14.2i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−4.05−7.02i)T+(−39.5+68.4i)T2 |
| 83 | 1−11.8T+83T2 |
| 89 | 1+(6.95+4.01i)T+(44.5+77.0i)T2 |
| 97 | 1+(5.47−3.15i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.49874104898433333357144531158, −12.41823546719022349044123115496, −11.28137033306575078089345680898, −10.28909866422768409990854211743, −8.934228587946402497137413956243, −7.85689530462315369604837992685, −6.27012710975716018429223533342, −5.43850362650757765929005689913, −4.73289293067868230197829541798, −2.67158364991551557083930519531,
1.81839705723372484590095866751, 3.43666919629166138341634221442, 5.20621488747264355135106664206, 6.19379506101887001518413345674, 6.86694881440744323807171955919, 8.970317043293839796111238353376, 10.24924475797263584851759189922, 10.80222501285068231088609387581, 11.94075362968840413290431473904, 12.73168221751295288708139458914