L(s) = 1 | + (−1.41 − 0.814i)2-s + (0.344 + 1.69i)3-s + (0.328 + 0.568i)4-s + (3.24 + 0.870i)5-s + (0.897 − 2.67i)6-s + (−4.04 + 1.08i)7-s + 2.18i·8-s + (−2.76 + 1.16i)9-s + (−3.87 − 3.87i)10-s + (3.68 − 0.988i)11-s + (−0.852 + 0.752i)12-s + (1.96 + 3.39i)13-s + (6.60 + 1.76i)14-s + (−0.359 + 5.81i)15-s + (2.44 − 4.22i)16-s + (1.76 + 3.72i)17-s + ⋯ |
L(s) = 1 | + (−0.998 − 0.576i)2-s + (0.198 + 0.980i)3-s + (0.164 + 0.284i)4-s + (1.45 + 0.389i)5-s + (0.366 − 1.09i)6-s + (−1.53 + 0.410i)7-s + 0.774i·8-s + (−0.921 + 0.389i)9-s + (−1.22 − 1.22i)10-s + (1.11 − 0.297i)11-s + (−0.246 + 0.217i)12-s + (0.544 + 0.942i)13-s + (1.76 + 0.472i)14-s + (−0.0928 + 1.50i)15-s + (0.610 − 1.05i)16-s + (0.427 + 0.903i)17-s + ⋯ |
Λ(s)=(=(153s/2ΓC(s)L(s)(0.691−0.721i)Λ(2−s)
Λ(s)=(=(153s/2ΓC(s+1/2)L(s)(0.691−0.721i)Λ(1−s)
Degree: |
2 |
Conductor: |
153
= 32⋅17
|
Sign: |
0.691−0.721i
|
Analytic conductor: |
1.22171 |
Root analytic conductor: |
1.10531 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ153(106,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 153, ( :1/2), 0.691−0.721i)
|
Particular Values
L(1) |
≈ |
0.707152+0.301756i |
L(21) |
≈ |
0.707152+0.301756i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.344−1.69i)T |
| 17 | 1+(−1.76−3.72i)T |
good | 2 | 1+(1.41+0.814i)T+(1+1.73i)T2 |
| 5 | 1+(−3.24−0.870i)T+(4.33+2.5i)T2 |
| 7 | 1+(4.04−1.08i)T+(6.06−3.5i)T2 |
| 11 | 1+(−3.68+0.988i)T+(9.52−5.5i)T2 |
| 13 | 1+(−1.96−3.39i)T+(−6.5+11.2i)T2 |
| 19 | 1+0.510iT−19T2 |
| 23 | 1+(−0.309+1.15i)T+(−19.9−11.5i)T2 |
| 29 | 1+(0.735+2.74i)T+(−25.1+14.5i)T2 |
| 31 | 1+(4.60+1.23i)T+(26.8+15.5i)T2 |
| 37 | 1+(−4.73+4.73i)T−37iT2 |
| 41 | 1+(0.206−0.771i)T+(−35.5−20.5i)T2 |
| 43 | 1+(4.94+2.85i)T+(21.5+37.2i)T2 |
| 47 | 1+(−2.00+3.47i)T+(−23.5−40.7i)T2 |
| 53 | 1+7.02iT−53T2 |
| 59 | 1+(−7.35+4.24i)T+(29.5−51.0i)T2 |
| 61 | 1+(−1.86+0.500i)T+(52.8−30.5i)T2 |
| 67 | 1+(5.48+9.49i)T+(−33.5+58.0i)T2 |
| 71 | 1+(7.92−7.92i)T−71iT2 |
| 73 | 1+(7.02−7.02i)T−73iT2 |
| 79 | 1+(−5.60+1.50i)T+(68.4−39.5i)T2 |
| 83 | 1+(−11.6−6.74i)T+(41.5+71.8i)T2 |
| 89 | 1−12.6T+89T2 |
| 97 | 1+(0.387+1.44i)T+(−84.0+48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.20055421226066412757536275706, −11.69381412227753793886441382274, −10.64439580198914524103933655584, −9.826069665785314960335209832690, −9.351144124290480596682520570331, −8.713320175706866275647551256312, −6.43909274604704833718410316704, −5.70018782217748329035846375424, −3.60712682441561410186622812063, −2.16048679704408855882641505731,
1.12582050986989145367451558244, 3.25055342204962492338826216830, 5.88405026683343091169143741869, 6.57622789840884170837078833124, 7.49013540379581862476533040567, 8.937779082502662679875420555152, 9.423418710350320962825730372138, 10.28517882571135353150327926396, 12.17875232454320307270881840066, 13.17045941414421463761328225734