L(s) = 1 | + (1.25 + 0.727i)2-s + (0.0948 + 1.72i)3-s + (0.0574 + 0.0995i)4-s + (1.43 + 0.384i)5-s + (−1.13 + 2.24i)6-s + (1.42 − 0.382i)7-s − 2.74i·8-s + (−2.98 + 0.328i)9-s + (1.52 + 1.52i)10-s + (−5.85 + 1.56i)11-s + (−0.166 + 0.108i)12-s + (0.466 + 0.807i)13-s + (2.07 + 0.556i)14-s + (−0.529 + 2.52i)15-s + (2.10 − 3.65i)16-s + (3.65 + 1.91i)17-s + ⋯ |
L(s) = 1 | + (0.890 + 0.514i)2-s + (0.0547 + 0.998i)3-s + (0.0287 + 0.0497i)4-s + (0.642 + 0.172i)5-s + (−0.464 + 0.917i)6-s + (0.540 − 0.144i)7-s − 0.969i·8-s + (−0.994 + 0.109i)9-s + (0.483 + 0.483i)10-s + (−1.76 + 0.473i)11-s + (−0.0481 + 0.0314i)12-s + (0.129 + 0.224i)13-s + (0.555 + 0.148i)14-s + (−0.136 + 0.650i)15-s + (0.527 − 0.912i)16-s + (0.885 + 0.463i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.396 - 0.917i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.396 - 0.917i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.44847 + 0.951758i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.44847 + 0.951758i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.0948 - 1.72i)T \) |
| 17 | \( 1 + (-3.65 - 1.91i)T \) |
good | 2 | \( 1 + (-1.25 - 0.727i)T + (1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (-1.43 - 0.384i)T + (4.33 + 2.5i)T^{2} \) |
| 7 | \( 1 + (-1.42 + 0.382i)T + (6.06 - 3.5i)T^{2} \) |
| 11 | \( 1 + (5.85 - 1.56i)T + (9.52 - 5.5i)T^{2} \) |
| 13 | \( 1 + (-0.466 - 0.807i)T + (-6.5 + 11.2i)T^{2} \) |
| 19 | \( 1 + 6.88iT - 19T^{2} \) |
| 23 | \( 1 + (-1.42 + 5.30i)T + (-19.9 - 11.5i)T^{2} \) |
| 29 | \( 1 + (-2.23 - 8.33i)T + (-25.1 + 14.5i)T^{2} \) |
| 31 | \( 1 + (-1.47 - 0.394i)T + (26.8 + 15.5i)T^{2} \) |
| 37 | \( 1 + (-0.700 + 0.700i)T - 37iT^{2} \) |
| 41 | \( 1 + (0.939 - 3.50i)T + (-35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (-0.360 - 0.208i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (3.62 - 6.28i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 3.69iT - 53T^{2} \) |
| 59 | \( 1 + (6.12 - 3.53i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (4.93 - 1.32i)T + (52.8 - 30.5i)T^{2} \) |
| 67 | \( 1 + (0.134 + 0.232i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-2.80 + 2.80i)T - 71iT^{2} \) |
| 73 | \( 1 + (-9.68 + 9.68i)T - 73iT^{2} \) |
| 79 | \( 1 + (-4.79 + 1.28i)T + (68.4 - 39.5i)T^{2} \) |
| 83 | \( 1 + (0.784 + 0.452i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 0.553T + 89T^{2} \) |
| 97 | \( 1 + (-3.75 - 14.0i)T + (-84.0 + 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.45561941586775556539967923612, −12.49314951633187076295237013455, −10.83186132536173239489928468003, −10.28826994811875251544459969656, −9.229058124702308277503239484860, −7.83951461274888822885100858300, −6.35604286585668804975245203485, −5.15371728725854065387213326906, −4.65817467792400312217032219887, −2.90517777656255147038820595834,
2.01077005271729714740373605790, 3.26947660290853450395490265364, 5.28968288010489146764955302890, 5.77600981023168729358158160212, 7.82246111445845613618882350692, 8.194900596261601985418121613226, 9.936212594869442507059835985595, 11.21597810624708285528842473984, 12.04312173128120413211119916007, 12.92423642044410480531713013464