L(s) = 1 | + (1.25 + 0.727i)2-s + (0.0948 + 1.72i)3-s + (0.0574 + 0.0995i)4-s + (1.43 + 0.384i)5-s + (−1.13 + 2.24i)6-s + (1.42 − 0.382i)7-s − 2.74i·8-s + (−2.98 + 0.328i)9-s + (1.52 + 1.52i)10-s + (−5.85 + 1.56i)11-s + (−0.166 + 0.108i)12-s + (0.466 + 0.807i)13-s + (2.07 + 0.556i)14-s + (−0.529 + 2.52i)15-s + (2.10 − 3.65i)16-s + (3.65 + 1.91i)17-s + ⋯ |
L(s) = 1 | + (0.890 + 0.514i)2-s + (0.0547 + 0.998i)3-s + (0.0287 + 0.0497i)4-s + (0.642 + 0.172i)5-s + (−0.464 + 0.917i)6-s + (0.540 − 0.144i)7-s − 0.969i·8-s + (−0.994 + 0.109i)9-s + (0.483 + 0.483i)10-s + (−1.76 + 0.473i)11-s + (−0.0481 + 0.0314i)12-s + (0.129 + 0.224i)13-s + (0.555 + 0.148i)14-s + (−0.136 + 0.650i)15-s + (0.527 − 0.912i)16-s + (0.885 + 0.463i)17-s + ⋯ |
Λ(s)=(=(153s/2ΓC(s)L(s)(0.396−0.917i)Λ(2−s)
Λ(s)=(=(153s/2ΓC(s+1/2)L(s)(0.396−0.917i)Λ(1−s)
Degree: |
2 |
Conductor: |
153
= 32⋅17
|
Sign: |
0.396−0.917i
|
Analytic conductor: |
1.22171 |
Root analytic conductor: |
1.10531 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ153(106,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 153, ( :1/2), 0.396−0.917i)
|
Particular Values
L(1) |
≈ |
1.44847+0.951758i |
L(21) |
≈ |
1.44847+0.951758i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.0948−1.72i)T |
| 17 | 1+(−3.65−1.91i)T |
good | 2 | 1+(−1.25−0.727i)T+(1+1.73i)T2 |
| 5 | 1+(−1.43−0.384i)T+(4.33+2.5i)T2 |
| 7 | 1+(−1.42+0.382i)T+(6.06−3.5i)T2 |
| 11 | 1+(5.85−1.56i)T+(9.52−5.5i)T2 |
| 13 | 1+(−0.466−0.807i)T+(−6.5+11.2i)T2 |
| 19 | 1+6.88iT−19T2 |
| 23 | 1+(−1.42+5.30i)T+(−19.9−11.5i)T2 |
| 29 | 1+(−2.23−8.33i)T+(−25.1+14.5i)T2 |
| 31 | 1+(−1.47−0.394i)T+(26.8+15.5i)T2 |
| 37 | 1+(−0.700+0.700i)T−37iT2 |
| 41 | 1+(0.939−3.50i)T+(−35.5−20.5i)T2 |
| 43 | 1+(−0.360−0.208i)T+(21.5+37.2i)T2 |
| 47 | 1+(3.62−6.28i)T+(−23.5−40.7i)T2 |
| 53 | 1−3.69iT−53T2 |
| 59 | 1+(6.12−3.53i)T+(29.5−51.0i)T2 |
| 61 | 1+(4.93−1.32i)T+(52.8−30.5i)T2 |
| 67 | 1+(0.134+0.232i)T+(−33.5+58.0i)T2 |
| 71 | 1+(−2.80+2.80i)T−71iT2 |
| 73 | 1+(−9.68+9.68i)T−73iT2 |
| 79 | 1+(−4.79+1.28i)T+(68.4−39.5i)T2 |
| 83 | 1+(0.784+0.452i)T+(41.5+71.8i)T2 |
| 89 | 1−0.553T+89T2 |
| 97 | 1+(−3.75−14.0i)T+(−84.0+48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.45561941586775556539967923612, −12.49314951633187076295237013455, −10.83186132536173239489928468003, −10.28826994811875251544459969656, −9.229058124702308277503239484860, −7.83951461274888822885100858300, −6.35604286585668804975245203485, −5.15371728725854065387213326906, −4.65817467792400312217032219887, −2.90517777656255147038820595834,
2.01077005271729714740373605790, 3.26947660290853450395490265364, 5.28968288010489146764955302890, 5.77600981023168729358158160212, 7.82246111445845613618882350692, 8.194900596261601985418121613226, 9.936212594869442507059835985595, 11.21597810624708285528842473984, 12.04312173128120413211119916007, 12.92423642044410480531713013464