Properties

Label 2-153-153.11-c1-0-0
Degree 22
Conductor 153153
Sign 0.5320.846i-0.532 - 0.846i
Analytic cond. 1.221711.22171
Root an. cond. 1.105311.10531
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.491 − 0.641i)2-s + (−1.73 − 0.0616i)3-s + (0.348 − 1.30i)4-s + (−3.10 − 0.203i)5-s + (0.812 + 1.14i)6-s + (0.330 + 5.03i)7-s + (−2.49 + 1.03i)8-s + (2.99 + 0.213i)9-s + (1.39 + 2.09i)10-s + (0.620 + 0.543i)11-s + (−0.683 + 2.23i)12-s + (−4.35 − 1.16i)13-s + (3.06 − 2.68i)14-s + (5.36 + 0.544i)15-s + (−0.439 − 0.253i)16-s + (−3.78 + 1.62i)17-s + ⋯
L(s)  = 1  + (−0.347 − 0.453i)2-s + (−0.999 − 0.0355i)3-s + (0.174 − 0.650i)4-s + (−1.38 − 0.0910i)5-s + (0.331 + 0.465i)6-s + (0.124 + 1.90i)7-s + (−0.883 + 0.365i)8-s + (0.997 + 0.0711i)9-s + (0.442 + 0.661i)10-s + (0.186 + 0.163i)11-s + (−0.197 + 0.643i)12-s + (−1.20 − 0.323i)13-s + (0.819 − 0.718i)14-s + (1.38 + 0.140i)15-s + (−0.109 − 0.0634i)16-s + (−0.918 + 0.394i)17-s + ⋯

Functional equation

Λ(s)=(153s/2ΓC(s)L(s)=((0.5320.846i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.532 - 0.846i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(153s/2ΓC(s+1/2)L(s)=((0.5320.846i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.532 - 0.846i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 153153    =    32173^{2} \cdot 17
Sign: 0.5320.846i-0.532 - 0.846i
Analytic conductor: 1.221711.22171
Root analytic conductor: 1.105311.10531
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ153(11,)\chi_{153} (11, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 153, ( :1/2), 0.5320.846i)(2,\ 153,\ (\ :1/2),\ -0.532 - 0.846i)

Particular Values

L(1)L(1) \approx 0.0541702+0.0980327i0.0541702 + 0.0980327i
L(12)L(\frac12) \approx 0.0541702+0.0980327i0.0541702 + 0.0980327i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1+(1.73+0.0616i)T 1 + (1.73 + 0.0616i)T
17 1+(3.781.62i)T 1 + (3.78 - 1.62i)T
good2 1+(0.491+0.641i)T+(0.517+1.93i)T2 1 + (0.491 + 0.641i)T + (-0.517 + 1.93i)T^{2}
5 1+(3.10+0.203i)T+(4.95+0.652i)T2 1 + (3.10 + 0.203i)T + (4.95 + 0.652i)T^{2}
7 1+(0.3305.03i)T+(6.94+0.913i)T2 1 + (-0.330 - 5.03i)T + (-6.94 + 0.913i)T^{2}
11 1+(0.6200.543i)T+(1.43+10.9i)T2 1 + (-0.620 - 0.543i)T + (1.43 + 10.9i)T^{2}
13 1+(4.35+1.16i)T+(11.2+6.5i)T2 1 + (4.35 + 1.16i)T + (11.2 + 6.5i)T^{2}
19 1+(1.95+0.811i)T+(13.4+13.4i)T2 1 + (1.95 + 0.811i)T + (13.4 + 13.4i)T^{2}
23 1+(1.27+3.75i)T+(18.2+14.0i)T2 1 + (1.27 + 3.75i)T + (-18.2 + 14.0i)T^{2}
29 1+(0.3760.185i)T+(17.623.0i)T2 1 + (0.376 - 0.185i)T + (17.6 - 23.0i)T^{2}
31 1+(0.8750.997i)T+(4.04+30.7i)T2 1 + (-0.875 - 0.997i)T + (-4.04 + 30.7i)T^{2}
37 1+(0.01320.0664i)T+(34.1+14.1i)T2 1 + (-0.0132 - 0.0664i)T + (-34.1 + 14.1i)T^{2}
41 1+(1.493.03i)T+(24.932.5i)T2 1 + (1.49 - 3.03i)T + (-24.9 - 32.5i)T^{2}
43 1+(0.945+7.17i)T+(41.511.1i)T2 1 + (-0.945 + 7.17i)T + (-41.5 - 11.1i)T^{2}
47 1+(5.19+1.39i)T+(40.723.5i)T2 1 + (-5.19 + 1.39i)T + (40.7 - 23.5i)T^{2}
53 1+(2.706.52i)T+(37.437.4i)T2 1 + (2.70 - 6.52i)T + (-37.4 - 37.4i)T^{2}
59 1+(2.702.07i)T+(15.2+56.9i)T2 1 + (-2.70 - 2.07i)T + (15.2 + 56.9i)T^{2}
61 1+(1.710.112i)T+(60.47.96i)T2 1 + (1.71 - 0.112i)T + (60.4 - 7.96i)T^{2}
67 1+(1.90+1.10i)T+(33.558.0i)T2 1 + (-1.90 + 1.10i)T + (33.5 - 58.0i)T^{2}
71 1+(2.14+0.426i)T+(65.527.1i)T2 1 + (-2.14 + 0.426i)T + (65.5 - 27.1i)T^{2}
73 1+(4.793.20i)T+(27.9+67.4i)T2 1 + (-4.79 - 3.20i)T + (27.9 + 67.4i)T^{2}
79 1+(8.739.96i)T+(10.378.3i)T2 1 + (8.73 - 9.96i)T + (-10.3 - 78.3i)T^{2}
83 1+(2.91+2.23i)T+(21.480.1i)T2 1 + (-2.91 + 2.23i)T + (21.4 - 80.1i)T^{2}
89 1+(3.26+3.26i)T89iT2 1 + (-3.26 + 3.26i)T - 89iT^{2}
97 1+(7.70+15.6i)T+(59.0+76.9i)T2 1 + (7.70 + 15.6i)T + (-59.0 + 76.9i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−12.55579666855536863108987263465, −12.10517407385019901856278059508, −11.46375151161172470180743164009, −10.55492145852882428459090496528, −9.322125179535131581951425056634, −8.313830547522934722300177127016, −6.80024524917110073677011067369, −5.64769813068704992929984324311, −4.60510031441731250312130063482, −2.34900520282817117173279599828, 0.13025874741519588135431229501, 3.79654564902860757534203212875, 4.53504156313230080304912482018, 6.70178983575682585054858635929, 7.29221030998669266807354599325, 7.963238341496359655204618606188, 9.652077465655337179577980936569, 10.90490618955604656301266177575, 11.54533851305612557559681762898, 12.39075473239613536621729768044

Graph of the ZZ-function along the critical line