Properties

Label 2-153-153.11-c1-0-14
Degree $2$
Conductor $153$
Sign $0.112 + 0.993i$
Analytic cond. $1.22171$
Root an. cond. $1.10531$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.607 + 0.791i)2-s + (−0.893 − 1.48i)3-s + (0.259 − 0.970i)4-s + (−3.76 − 0.246i)5-s + (0.631 − 1.60i)6-s + (−0.260 − 3.97i)7-s + (2.76 − 1.14i)8-s + (−1.40 + 2.65i)9-s + (−2.08 − 3.12i)10-s + (2.97 + 2.60i)11-s + (−1.67 + 0.481i)12-s + (0.149 + 0.0401i)13-s + (2.99 − 2.62i)14-s + (2.99 + 5.80i)15-s + (0.850 + 0.490i)16-s + (−1.50 − 3.83i)17-s + ⋯
L(s)  = 1  + (0.429 + 0.559i)2-s + (−0.515 − 0.856i)3-s + (0.129 − 0.485i)4-s + (−1.68 − 0.110i)5-s + (0.258 − 0.656i)6-s + (−0.0985 − 1.50i)7-s + (0.979 − 0.405i)8-s + (−0.467 + 0.883i)9-s + (−0.660 − 0.988i)10-s + (0.896 + 0.785i)11-s + (−0.482 + 0.138i)12-s + (0.0415 + 0.0111i)13-s + (0.799 − 0.701i)14-s + (0.772 + 1.49i)15-s + (0.212 + 0.122i)16-s + (−0.364 − 0.931i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.112 + 0.993i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.112 + 0.993i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(153\)    =    \(3^{2} \cdot 17\)
Sign: $0.112 + 0.993i$
Analytic conductor: \(1.22171\)
Root analytic conductor: \(1.10531\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{153} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 153,\ (\ :1/2),\ 0.112 + 0.993i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.701201 - 0.626254i\)
\(L(\frac12)\) \(\approx\) \(0.701201 - 0.626254i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (0.893 + 1.48i)T \)
17 \( 1 + (1.50 + 3.83i)T \)
good2 \( 1 + (-0.607 - 0.791i)T + (-0.517 + 1.93i)T^{2} \)
5 \( 1 + (3.76 + 0.246i)T + (4.95 + 0.652i)T^{2} \)
7 \( 1 + (0.260 + 3.97i)T + (-6.94 + 0.913i)T^{2} \)
11 \( 1 + (-2.97 - 2.60i)T + (1.43 + 10.9i)T^{2} \)
13 \( 1 + (-0.149 - 0.0401i)T + (11.2 + 6.5i)T^{2} \)
19 \( 1 + (-3.79 - 1.57i)T + (13.4 + 13.4i)T^{2} \)
23 \( 1 + (-0.314 - 0.926i)T + (-18.2 + 14.0i)T^{2} \)
29 \( 1 + (-4.46 + 2.20i)T + (17.6 - 23.0i)T^{2} \)
31 \( 1 + (3.23 + 3.69i)T + (-4.04 + 30.7i)T^{2} \)
37 \( 1 + (0.326 + 1.64i)T + (-34.1 + 14.1i)T^{2} \)
41 \( 1 + (2.15 - 4.36i)T + (-24.9 - 32.5i)T^{2} \)
43 \( 1 + (0.517 - 3.93i)T + (-41.5 - 11.1i)T^{2} \)
47 \( 1 + (2.97 - 0.797i)T + (40.7 - 23.5i)T^{2} \)
53 \( 1 + (0.152 - 0.367i)T + (-37.4 - 37.4i)T^{2} \)
59 \( 1 + (-1.37 - 1.05i)T + (15.2 + 56.9i)T^{2} \)
61 \( 1 + (-7.89 + 0.517i)T + (60.4 - 7.96i)T^{2} \)
67 \( 1 + (-9.67 + 5.58i)T + (33.5 - 58.0i)T^{2} \)
71 \( 1 + (3.55 - 0.707i)T + (65.5 - 27.1i)T^{2} \)
73 \( 1 + (-12.4 - 8.29i)T + (27.9 + 67.4i)T^{2} \)
79 \( 1 + (7.85 - 8.95i)T + (-10.3 - 78.3i)T^{2} \)
83 \( 1 + (0.349 - 0.268i)T + (21.4 - 80.1i)T^{2} \)
89 \( 1 + (-3.79 + 3.79i)T - 89iT^{2} \)
97 \( 1 + (3.20 + 6.50i)T + (-59.0 + 76.9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.81260413494433339860569406509, −11.66683390682083988736359133563, −11.13639670321642902615126732411, −9.858963374196641544645156411637, −7.907764483804992549776346549278, −7.22542963322695413404245919076, −6.66589756677905899917433596037, −4.90439806201472396157386562752, −3.96939231426915795067061418005, −0.936223430061344102498045101090, 3.15336838729616860847047603912, 3.92009578084765507313463607015, 5.17735908110958273289245531372, 6.71164750748954583504191909324, 8.320828573979728703792571680996, 8.923962457630297921519195067884, 10.68950214927747782264831403070, 11.56365049635679251228265754760, 11.89297421350653040071268130441, 12.64770711698103411443594301918

Graph of the $Z$-function along the critical line