L(s) = 1 | + (0.607 + 0.791i)2-s + (−0.893 − 1.48i)3-s + (0.259 − 0.970i)4-s + (−3.76 − 0.246i)5-s + (0.631 − 1.60i)6-s + (−0.260 − 3.97i)7-s + (2.76 − 1.14i)8-s + (−1.40 + 2.65i)9-s + (−2.08 − 3.12i)10-s + (2.97 + 2.60i)11-s + (−1.67 + 0.481i)12-s + (0.149 + 0.0401i)13-s + (2.99 − 2.62i)14-s + (2.99 + 5.80i)15-s + (0.850 + 0.490i)16-s + (−1.50 − 3.83i)17-s + ⋯ |
L(s) = 1 | + (0.429 + 0.559i)2-s + (−0.515 − 0.856i)3-s + (0.129 − 0.485i)4-s + (−1.68 − 0.110i)5-s + (0.258 − 0.656i)6-s + (−0.0985 − 1.50i)7-s + (0.979 − 0.405i)8-s + (−0.467 + 0.883i)9-s + (−0.660 − 0.988i)10-s + (0.896 + 0.785i)11-s + (−0.482 + 0.138i)12-s + (0.0415 + 0.0111i)13-s + (0.799 − 0.701i)14-s + (0.772 + 1.49i)15-s + (0.212 + 0.122i)16-s + (−0.364 − 0.931i)17-s + ⋯ |
Λ(s)=(=(153s/2ΓC(s)L(s)(0.112+0.993i)Λ(2−s)
Λ(s)=(=(153s/2ΓC(s+1/2)L(s)(0.112+0.993i)Λ(1−s)
Degree: |
2 |
Conductor: |
153
= 32⋅17
|
Sign: |
0.112+0.993i
|
Analytic conductor: |
1.22171 |
Root analytic conductor: |
1.10531 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ153(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 153, ( :1/2), 0.112+0.993i)
|
Particular Values
L(1) |
≈ |
0.701201−0.626254i |
L(21) |
≈ |
0.701201−0.626254i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.893+1.48i)T |
| 17 | 1+(1.50+3.83i)T |
good | 2 | 1+(−0.607−0.791i)T+(−0.517+1.93i)T2 |
| 5 | 1+(3.76+0.246i)T+(4.95+0.652i)T2 |
| 7 | 1+(0.260+3.97i)T+(−6.94+0.913i)T2 |
| 11 | 1+(−2.97−2.60i)T+(1.43+10.9i)T2 |
| 13 | 1+(−0.149−0.0401i)T+(11.2+6.5i)T2 |
| 19 | 1+(−3.79−1.57i)T+(13.4+13.4i)T2 |
| 23 | 1+(−0.314−0.926i)T+(−18.2+14.0i)T2 |
| 29 | 1+(−4.46+2.20i)T+(17.6−23.0i)T2 |
| 31 | 1+(3.23+3.69i)T+(−4.04+30.7i)T2 |
| 37 | 1+(0.326+1.64i)T+(−34.1+14.1i)T2 |
| 41 | 1+(2.15−4.36i)T+(−24.9−32.5i)T2 |
| 43 | 1+(0.517−3.93i)T+(−41.5−11.1i)T2 |
| 47 | 1+(2.97−0.797i)T+(40.7−23.5i)T2 |
| 53 | 1+(0.152−0.367i)T+(−37.4−37.4i)T2 |
| 59 | 1+(−1.37−1.05i)T+(15.2+56.9i)T2 |
| 61 | 1+(−7.89+0.517i)T+(60.4−7.96i)T2 |
| 67 | 1+(−9.67+5.58i)T+(33.5−58.0i)T2 |
| 71 | 1+(3.55−0.707i)T+(65.5−27.1i)T2 |
| 73 | 1+(−12.4−8.29i)T+(27.9+67.4i)T2 |
| 79 | 1+(7.85−8.95i)T+(−10.3−78.3i)T2 |
| 83 | 1+(0.349−0.268i)T+(21.4−80.1i)T2 |
| 89 | 1+(−3.79+3.79i)T−89iT2 |
| 97 | 1+(3.20+6.50i)T+(−59.0+76.9i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.81260413494433339860569406509, −11.66683390682083988736359133563, −11.13639670321642902615126732411, −9.858963374196641544645156411637, −7.907764483804992549776346549278, −7.22542963322695413404245919076, −6.66589756677905899917433596037, −4.90439806201472396157386562752, −3.96939231426915795067061418005, −0.936223430061344102498045101090,
3.15336838729616860847047603912, 3.92009578084765507313463607015, 5.17735908110958273289245531372, 6.71164750748954583504191909324, 8.320828573979728703792571680996, 8.923962457630297921519195067884, 10.68950214927747782264831403070, 11.56365049635679251228265754760, 11.89297421350653040071268130441, 12.64770711698103411443594301918