Properties

Label 2-153-153.11-c1-0-15
Degree $2$
Conductor $153$
Sign $-0.437 - 0.899i$
Analytic cond. $1.22171$
Root an. cond. $1.10531$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.34 − 1.75i)2-s + (−0.353 − 1.69i)3-s + (−0.754 + 2.81i)4-s + (−1.95 − 0.127i)5-s + (−2.50 + 2.90i)6-s + (−0.0117 − 0.179i)7-s + (1.87 − 0.776i)8-s + (−2.75 + 1.19i)9-s + (2.40 + 3.60i)10-s + (−1.93 − 1.69i)11-s + (5.04 + 0.284i)12-s + (1.09 + 0.292i)13-s + (−0.299 + 0.263i)14-s + (0.472 + 3.35i)15-s + (1.15 + 0.665i)16-s + (4.05 + 0.759i)17-s + ⋯
L(s)  = 1  + (−0.954 − 1.24i)2-s + (−0.203 − 0.978i)3-s + (−0.377 + 1.40i)4-s + (−0.872 − 0.0572i)5-s + (−1.02 + 1.18i)6-s + (−0.00444 − 0.0678i)7-s + (0.662 − 0.274i)8-s + (−0.916 + 0.399i)9-s + (0.761 + 1.14i)10-s + (−0.583 − 0.511i)11-s + (1.45 + 0.0822i)12-s + (0.303 + 0.0812i)13-s + (−0.0801 + 0.0702i)14-s + (0.121 + 0.866i)15-s + (0.288 + 0.166i)16-s + (0.982 + 0.184i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.437 - 0.899i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.437 - 0.899i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(153\)    =    \(3^{2} \cdot 17\)
Sign: $-0.437 - 0.899i$
Analytic conductor: \(1.22171\)
Root analytic conductor: \(1.10531\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{153} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 153,\ (\ :1/2),\ -0.437 - 0.899i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.148564 + 0.237377i\)
\(L(\frac12)\) \(\approx\) \(0.148564 + 0.237377i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (0.353 + 1.69i)T \)
17 \( 1 + (-4.05 - 0.759i)T \)
good2 \( 1 + (1.34 + 1.75i)T + (-0.517 + 1.93i)T^{2} \)
5 \( 1 + (1.95 + 0.127i)T + (4.95 + 0.652i)T^{2} \)
7 \( 1 + (0.0117 + 0.179i)T + (-6.94 + 0.913i)T^{2} \)
11 \( 1 + (1.93 + 1.69i)T + (1.43 + 10.9i)T^{2} \)
13 \( 1 + (-1.09 - 0.292i)T + (11.2 + 6.5i)T^{2} \)
19 \( 1 + (5.72 + 2.37i)T + (13.4 + 13.4i)T^{2} \)
23 \( 1 + (1.13 + 3.34i)T + (-18.2 + 14.0i)T^{2} \)
29 \( 1 + (5.61 - 2.76i)T + (17.6 - 23.0i)T^{2} \)
31 \( 1 + (3.35 + 3.82i)T + (-4.04 + 30.7i)T^{2} \)
37 \( 1 + (1.71 + 8.61i)T + (-34.1 + 14.1i)T^{2} \)
41 \( 1 + (-3.19 + 6.46i)T + (-24.9 - 32.5i)T^{2} \)
43 \( 1 + (-0.244 + 1.85i)T + (-41.5 - 11.1i)T^{2} \)
47 \( 1 + (-0.820 + 0.219i)T + (40.7 - 23.5i)T^{2} \)
53 \( 1 + (4.44 - 10.7i)T + (-37.4 - 37.4i)T^{2} \)
59 \( 1 + (2.50 + 1.92i)T + (15.2 + 56.9i)T^{2} \)
61 \( 1 + (10.8 - 0.709i)T + (60.4 - 7.96i)T^{2} \)
67 \( 1 + (-9.11 + 5.26i)T + (33.5 - 58.0i)T^{2} \)
71 \( 1 + (-12.6 + 2.51i)T + (65.5 - 27.1i)T^{2} \)
73 \( 1 + (-8.59 - 5.74i)T + (27.9 + 67.4i)T^{2} \)
79 \( 1 + (-4.22 + 4.82i)T + (-10.3 - 78.3i)T^{2} \)
83 \( 1 + (-7.40 + 5.68i)T + (21.4 - 80.1i)T^{2} \)
89 \( 1 + (10.2 - 10.2i)T - 89iT^{2} \)
97 \( 1 + (1.17 + 2.37i)T + (-59.0 + 76.9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.32271664997283329497354889248, −11.01557449238666224186299522608, −10.81362662144692132045243047348, −9.132729435434640828648611880199, −8.226655173205027646472494920826, −7.46911787857747848015108356488, −5.83269820311371797663758501777, −3.70776582894326297950218436894, −2.21305785569613645413255873831, −0.36803032889545157305060827004, 3.66112271677350247940394805076, 5.15667097113071330960319845643, 6.26745567806657323773397741078, 7.66792785354940085359802397190, 8.305305556345178947786238128980, 9.481966018604418523969596106372, 10.25875488606291511991444662770, 11.36699370339894900485220258121, 12.51930800740770433490791297343, 14.23149431711959693212905696503

Graph of the $Z$-function along the critical line