L(s) = 1 | + (−1.34 − 1.75i)2-s + (−0.353 − 1.69i)3-s + (−0.754 + 2.81i)4-s + (−1.95 − 0.127i)5-s + (−2.50 + 2.90i)6-s + (−0.0117 − 0.179i)7-s + (1.87 − 0.776i)8-s + (−2.75 + 1.19i)9-s + (2.40 + 3.60i)10-s + (−1.93 − 1.69i)11-s + (5.04 + 0.284i)12-s + (1.09 + 0.292i)13-s + (−0.299 + 0.263i)14-s + (0.472 + 3.35i)15-s + (1.15 + 0.665i)16-s + (4.05 + 0.759i)17-s + ⋯ |
L(s) = 1 | + (−0.954 − 1.24i)2-s + (−0.203 − 0.978i)3-s + (−0.377 + 1.40i)4-s + (−0.872 − 0.0572i)5-s + (−1.02 + 1.18i)6-s + (−0.00444 − 0.0678i)7-s + (0.662 − 0.274i)8-s + (−0.916 + 0.399i)9-s + (0.761 + 1.14i)10-s + (−0.583 − 0.511i)11-s + (1.45 + 0.0822i)12-s + (0.303 + 0.0812i)13-s + (−0.0801 + 0.0702i)14-s + (0.121 + 0.866i)15-s + (0.288 + 0.166i)16-s + (0.982 + 0.184i)17-s + ⋯ |
Λ(s)=(=(153s/2ΓC(s)L(s)(−0.437−0.899i)Λ(2−s)
Λ(s)=(=(153s/2ΓC(s+1/2)L(s)(−0.437−0.899i)Λ(1−s)
Degree: |
2 |
Conductor: |
153
= 32⋅17
|
Sign: |
−0.437−0.899i
|
Analytic conductor: |
1.22171 |
Root analytic conductor: |
1.10531 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ153(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 153, ( :1/2), −0.437−0.899i)
|
Particular Values
L(1) |
≈ |
0.148564+0.237377i |
L(21) |
≈ |
0.148564+0.237377i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(0.353+1.69i)T |
| 17 | 1+(−4.05−0.759i)T |
good | 2 | 1+(1.34+1.75i)T+(−0.517+1.93i)T2 |
| 5 | 1+(1.95+0.127i)T+(4.95+0.652i)T2 |
| 7 | 1+(0.0117+0.179i)T+(−6.94+0.913i)T2 |
| 11 | 1+(1.93+1.69i)T+(1.43+10.9i)T2 |
| 13 | 1+(−1.09−0.292i)T+(11.2+6.5i)T2 |
| 19 | 1+(5.72+2.37i)T+(13.4+13.4i)T2 |
| 23 | 1+(1.13+3.34i)T+(−18.2+14.0i)T2 |
| 29 | 1+(5.61−2.76i)T+(17.6−23.0i)T2 |
| 31 | 1+(3.35+3.82i)T+(−4.04+30.7i)T2 |
| 37 | 1+(1.71+8.61i)T+(−34.1+14.1i)T2 |
| 41 | 1+(−3.19+6.46i)T+(−24.9−32.5i)T2 |
| 43 | 1+(−0.244+1.85i)T+(−41.5−11.1i)T2 |
| 47 | 1+(−0.820+0.219i)T+(40.7−23.5i)T2 |
| 53 | 1+(4.44−10.7i)T+(−37.4−37.4i)T2 |
| 59 | 1+(2.50+1.92i)T+(15.2+56.9i)T2 |
| 61 | 1+(10.8−0.709i)T+(60.4−7.96i)T2 |
| 67 | 1+(−9.11+5.26i)T+(33.5−58.0i)T2 |
| 71 | 1+(−12.6+2.51i)T+(65.5−27.1i)T2 |
| 73 | 1+(−8.59−5.74i)T+(27.9+67.4i)T2 |
| 79 | 1+(−4.22+4.82i)T+(−10.3−78.3i)T2 |
| 83 | 1+(−7.40+5.68i)T+(21.4−80.1i)T2 |
| 89 | 1+(10.2−10.2i)T−89iT2 |
| 97 | 1+(1.17+2.37i)T+(−59.0+76.9i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.32271664997283329497354889248, −11.01557449238666224186299522608, −10.81362662144692132045243047348, −9.132729435434640828648611880199, −8.226655173205027646472494920826, −7.46911787857747848015108356488, −5.83269820311371797663758501777, −3.70776582894326297950218436894, −2.21305785569613645413255873831, −0.36803032889545157305060827004,
3.66112271677350247940394805076, 5.15667097113071330960319845643, 6.26745567806657323773397741078, 7.66792785354940085359802397190, 8.305305556345178947786238128980, 9.481966018604418523969596106372, 10.25875488606291511991444662770, 11.36699370339894900485220258121, 12.51930800740770433490791297343, 14.23149431711959693212905696503