L(s) = 1 | + (1.34 + 1.74i)2-s + (1.37 + 1.05i)3-s + (−0.738 + 2.75i)4-s + (−1.77 − 0.116i)5-s + (0.0106 + 3.81i)6-s + (−0.295 − 4.50i)7-s + (−1.73 + 0.718i)8-s + (0.792 + 2.89i)9-s + (−2.17 − 3.25i)10-s + (−3.64 − 3.19i)11-s + (−3.91 + 3.01i)12-s + (3.24 + 0.868i)13-s + (7.47 − 6.55i)14-s + (−2.31 − 2.02i)15-s + (1.36 + 0.785i)16-s + (−1.37 + 3.88i)17-s + ⋯ |
L(s) = 1 | + (0.948 + 1.23i)2-s + (0.795 + 0.606i)3-s + (−0.369 + 1.37i)4-s + (−0.792 − 0.0519i)5-s + (0.00433 + 1.55i)6-s + (−0.111 − 1.70i)7-s + (−0.612 + 0.253i)8-s + (0.264 + 0.964i)9-s + (−0.686 − 1.02i)10-s + (−1.09 − 0.962i)11-s + (−1.12 + 0.871i)12-s + (0.899 + 0.240i)13-s + (1.99 − 1.75i)14-s + (−0.598 − 0.521i)15-s + (0.340 + 0.196i)16-s + (−0.332 + 0.942i)17-s + ⋯ |
Λ(s)=(=(153s/2ΓC(s)L(s)(−0.154−0.988i)Λ(2−s)
Λ(s)=(=(153s/2ΓC(s+1/2)L(s)(−0.154−0.988i)Λ(1−s)
Degree: |
2 |
Conductor: |
153
= 32⋅17
|
Sign: |
−0.154−0.988i
|
Analytic conductor: |
1.22171 |
Root analytic conductor: |
1.10531 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ153(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 153, ( :1/2), −0.154−0.988i)
|
Particular Values
L(1) |
≈ |
1.23798+1.44649i |
L(21) |
≈ |
1.23798+1.44649i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−1.37−1.05i)T |
| 17 | 1+(1.37−3.88i)T |
good | 2 | 1+(−1.34−1.74i)T+(−0.517+1.93i)T2 |
| 5 | 1+(1.77+0.116i)T+(4.95+0.652i)T2 |
| 7 | 1+(0.295+4.50i)T+(−6.94+0.913i)T2 |
| 11 | 1+(3.64+3.19i)T+(1.43+10.9i)T2 |
| 13 | 1+(−3.24−0.868i)T+(11.2+6.5i)T2 |
| 19 | 1+(2.09+0.867i)T+(13.4+13.4i)T2 |
| 23 | 1+(−1.20−3.54i)T+(−18.2+14.0i)T2 |
| 29 | 1+(3.39−1.67i)T+(17.6−23.0i)T2 |
| 31 | 1+(0.656+0.748i)T+(−4.04+30.7i)T2 |
| 37 | 1+(−0.0324−0.163i)T+(−34.1+14.1i)T2 |
| 41 | 1+(−1.80+3.66i)T+(−24.9−32.5i)T2 |
| 43 | 1+(−1.31+9.95i)T+(−41.5−11.1i)T2 |
| 47 | 1+(−7.98+2.13i)T+(40.7−23.5i)T2 |
| 53 | 1+(−1.75+4.24i)T+(−37.4−37.4i)T2 |
| 59 | 1+(−2.19−1.68i)T+(15.2+56.9i)T2 |
| 61 | 1+(−7.16+0.469i)T+(60.4−7.96i)T2 |
| 67 | 1+(0.191−0.110i)T+(33.5−58.0i)T2 |
| 71 | 1+(4.68−0.931i)T+(65.5−27.1i)T2 |
| 73 | 1+(−3.14−2.10i)T+(27.9+67.4i)T2 |
| 79 | 1+(6.37−7.26i)T+(−10.3−78.3i)T2 |
| 83 | 1+(1.15−0.886i)T+(21.4−80.1i)T2 |
| 89 | 1+(9.41−9.41i)T−89iT2 |
| 97 | 1+(−6.36−12.9i)T+(−59.0+76.9i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.49819384752753600786005489267, −13.04630675268674702309887578602, −11.02190294252189638541301632727, −10.41320055907150208388370585670, −8.590631675176297603400771034803, −7.83663769183486422010195616555, −7.03078174294476721286792599627, −5.50528668157711457566894745328, −4.01819634696692819216193209024, −3.73317585192419688665786205735,
2.20892965925012977300477370840, 3.02502752899459150251628265434, 4.47820235988990608119167343966, 5.87007600634914116647081719768, 7.58153242640271900547254047530, 8.626902147060216702763740201097, 9.759043581014818113832103424343, 11.15572210614106358119433290575, 11.98659294123619127387173580164, 12.70831129901527673612169031250