Properties

Label 2-153-153.13-c3-0-51
Degree $2$
Conductor $153$
Sign $-0.949 - 0.313i$
Analytic cond. $9.02729$
Root an. cond. $3.00454$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (3.50 − 2.02i)2-s + (0.218 − 5.19i)3-s + (4.20 − 7.28i)4-s + (−18.5 + 4.97i)5-s + (−9.75 − 18.6i)6-s + (−10.4 − 2.80i)7-s − 1.69i·8-s + (−26.9 − 2.26i)9-s + (−55.0 + 55.0i)10-s + (−22.6 − 6.05i)11-s + (−36.9 − 23.4i)12-s + (39.3 − 68.1i)13-s + (−42.4 + 11.3i)14-s + (21.7 + 97.3i)15-s + (30.2 + 52.3i)16-s + (18.6 − 67.5i)17-s + ⋯
L(s)  = 1  + (1.24 − 0.716i)2-s + (0.0420 − 0.999i)3-s + (0.526 − 0.911i)4-s + (−1.65 + 0.444i)5-s + (−0.663 − 1.26i)6-s + (−0.566 − 0.151i)7-s − 0.0748i·8-s + (−0.996 − 0.0840i)9-s + (−1.73 + 1.73i)10-s + (−0.619 − 0.166i)11-s + (−0.888 − 0.563i)12-s + (0.839 − 1.45i)13-s + (−0.810 + 0.217i)14-s + (0.374 + 1.67i)15-s + (0.472 + 0.818i)16-s + (0.266 − 0.963i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.949 - 0.313i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 153 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.949 - 0.313i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(153\)    =    \(3^{2} \cdot 17\)
Sign: $-0.949 - 0.313i$
Analytic conductor: \(9.02729\)
Root analytic conductor: \(3.00454\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{153} (13, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 153,\ (\ :3/2),\ -0.949 - 0.313i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.217311 + 1.35352i\)
\(L(\frac12)\) \(\approx\) \(0.217311 + 1.35352i\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + (-0.218 + 5.19i)T \)
17 \( 1 + (-18.6 + 67.5i)T \)
good2 \( 1 + (-3.50 + 2.02i)T + (4 - 6.92i)T^{2} \)
5 \( 1 + (18.5 - 4.97i)T + (108. - 62.5i)T^{2} \)
7 \( 1 + (10.4 + 2.80i)T + (297. + 171.5i)T^{2} \)
11 \( 1 + (22.6 + 6.05i)T + (1.15e3 + 665.5i)T^{2} \)
13 \( 1 + (-39.3 + 68.1i)T + (-1.09e3 - 1.90e3i)T^{2} \)
19 \( 1 + 33.0iT - 6.85e3T^{2} \)
23 \( 1 + (36.6 + 136. i)T + (-1.05e4 + 6.08e3i)T^{2} \)
29 \( 1 + (45.9 - 171. i)T + (-2.11e4 - 1.21e4i)T^{2} \)
31 \( 1 + (-69.6 + 18.6i)T + (2.57e4 - 1.48e4i)T^{2} \)
37 \( 1 + (203. + 203. i)T + 5.06e4iT^{2} \)
41 \( 1 + (-46.9 - 175. i)T + (-5.96e4 + 3.44e4i)T^{2} \)
43 \( 1 + (245. - 141. i)T + (3.97e4 - 6.88e4i)T^{2} \)
47 \( 1 + (-92.2 - 159. i)T + (-5.19e4 + 8.99e4i)T^{2} \)
53 \( 1 - 80.6iT - 1.48e5T^{2} \)
59 \( 1 + (207. + 119. i)T + (1.02e5 + 1.77e5i)T^{2} \)
61 \( 1 + (-131. - 35.3i)T + (1.96e5 + 1.13e5i)T^{2} \)
67 \( 1 + (-511. + 885. i)T + (-1.50e5 - 2.60e5i)T^{2} \)
71 \( 1 + (403. + 403. i)T + 3.57e5iT^{2} \)
73 \( 1 + (-264. - 264. i)T + 3.89e5iT^{2} \)
79 \( 1 + (-814. - 218. i)T + (4.26e5 + 2.46e5i)T^{2} \)
83 \( 1 + (-671. + 387. i)T + (2.85e5 - 4.95e5i)T^{2} \)
89 \( 1 + 578.T + 7.04e5T^{2} \)
97 \( 1 + (29.6 - 110. i)T + (-7.90e5 - 4.56e5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.27687371878565006982238493123, −11.22997443674939422314458253417, −10.67491611406986936637506911843, −8.419732723020234770168818225142, −7.65913368067937019245027535535, −6.44345756664659014189761764702, −5.05986720700480136885912295415, −3.46609676190147165522735295681, −2.88585835046322850328753242798, −0.43155162233603736189543034865, 3.61082201825263528464577599010, 3.99679834452261784329072302453, 5.14169825075461676539162197907, 6.35996926999653330464963678710, 7.72390943472436885930339852042, 8.731434143973764656873711151419, 10.05084142237490593091739295486, 11.47792190760808239532693301685, 12.06863950738323943951477193547, 13.21774467292564400212292443070

Graph of the $Z$-function along the critical line