L(s) = 1 | + (0.766 − 0.642i)4-s + (0.939 − 1.62i)7-s + (0.266 + 1.50i)13-s + (0.173 − 0.984i)16-s + (−0.5 + 0.866i)19-s + (−0.939 − 0.342i)25-s + (−0.326 − 1.85i)28-s + 0.347·31-s − 1.87·37-s + (0.266 + 0.223i)43-s + (−1.26 − 2.19i)49-s + (1.17 + 0.984i)52-s + (0.266 + 1.50i)61-s + (−0.500 − 0.866i)64-s + (1.76 + 0.642i)67-s + ⋯ |
L(s) = 1 | + (0.766 − 0.642i)4-s + (0.939 − 1.62i)7-s + (0.266 + 1.50i)13-s + (0.173 − 0.984i)16-s + (−0.5 + 0.866i)19-s + (−0.939 − 0.342i)25-s + (−0.326 − 1.85i)28-s + 0.347·31-s − 1.87·37-s + (0.266 + 0.223i)43-s + (−1.26 − 2.19i)49-s + (1.17 + 0.984i)52-s + (0.266 + 1.50i)61-s + (−0.500 − 0.866i)64-s + (1.76 + 0.642i)67-s + ⋯ |
Λ(s)=(=(1539s/2ΓC(s)L(s)(0.630+0.776i)Λ(1−s)
Λ(s)=(=(1539s/2ΓC(s)L(s)(0.630+0.776i)Λ(1−s)
Degree: |
2 |
Conductor: |
1539
= 34⋅19
|
Sign: |
0.630+0.776i
|
Analytic conductor: |
0.768061 |
Root analytic conductor: |
0.876390 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1539(701,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1539, ( :0), 0.630+0.776i)
|
Particular Values
L(21) |
≈ |
1.429860829 |
L(21) |
≈ |
1.429860829 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 19 | 1+(0.5−0.866i)T |
good | 2 | 1+(−0.766+0.642i)T2 |
| 5 | 1+(0.939+0.342i)T2 |
| 7 | 1+(−0.939+1.62i)T+(−0.5−0.866i)T2 |
| 11 | 1−T2 |
| 13 | 1+(−0.266−1.50i)T+(−0.939+0.342i)T2 |
| 17 | 1+(0.939+0.342i)T2 |
| 23 | 1+(−0.173+0.984i)T2 |
| 29 | 1+(−0.173+0.984i)T2 |
| 31 | 1−0.347T+T2 |
| 37 | 1+1.87T+T2 |
| 41 | 1+(−0.766+0.642i)T2 |
| 43 | 1+(−0.266−0.223i)T+(0.173+0.984i)T2 |
| 47 | 1+(−0.173+0.984i)T2 |
| 53 | 1+(−0.766−0.642i)T2 |
| 59 | 1+(−0.173−0.984i)T2 |
| 61 | 1+(−0.266−1.50i)T+(−0.939+0.342i)T2 |
| 67 | 1+(−1.76−0.642i)T+(0.766+0.642i)T2 |
| 71 | 1+(−0.766+0.642i)T2 |
| 73 | 1+(−0.266−0.223i)T+(0.173+0.984i)T2 |
| 79 | 1+(−0.0603+0.342i)T+(−0.939−0.342i)T2 |
| 83 | 1+(0.5+0.866i)T2 |
| 89 | 1+(−0.173+0.984i)T2 |
| 97 | 1+(1.87−0.684i)T+(0.766−0.642i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.839036635875506689744343577677, −8.650382044158021148447352052988, −7.79453633842501404835591115524, −7.03049023070501881955062667128, −6.50603252113923799294352320884, −5.42865492090309232827935010196, −4.40047188461384447810043274469, −3.76338598162392126990509651957, −2.07289366321321238224563888294, −1.32029729186612737803445188890,
1.86958807628796803968049289906, 2.65381813564669162668896695511, 3.57697497779721537029569596983, 4.99508638760062759611069931061, 5.63030651034592048352119998258, 6.47925228368821255103646689308, 7.51927962535623997856574907179, 8.305065138818329809778676915784, 8.607771762043015982129751714150, 9.692901482578110050797919721123