L(s) = 1 | + (0.766 − 0.642i)4-s + (0.939 − 1.62i)7-s + (0.266 + 1.50i)13-s + (0.173 − 0.984i)16-s + (−0.5 + 0.866i)19-s + (−0.939 − 0.342i)25-s + (−0.326 − 1.85i)28-s + 0.347·31-s − 1.87·37-s + (0.266 + 0.223i)43-s + (−1.26 − 2.19i)49-s + (1.17 + 0.984i)52-s + (0.266 + 1.50i)61-s + (−0.500 − 0.866i)64-s + (1.76 + 0.642i)67-s + ⋯ |
L(s) = 1 | + (0.766 − 0.642i)4-s + (0.939 − 1.62i)7-s + (0.266 + 1.50i)13-s + (0.173 − 0.984i)16-s + (−0.5 + 0.866i)19-s + (−0.939 − 0.342i)25-s + (−0.326 − 1.85i)28-s + 0.347·31-s − 1.87·37-s + (0.266 + 0.223i)43-s + (−1.26 − 2.19i)49-s + (1.17 + 0.984i)52-s + (0.266 + 1.50i)61-s + (−0.500 − 0.866i)64-s + (1.76 + 0.642i)67-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1539 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.630 + 0.776i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1539 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.630 + 0.776i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.429860829\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.429860829\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 19 | \( 1 + (0.5 - 0.866i)T \) |
good | 2 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 5 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 7 | \( 1 + (-0.939 + 1.62i)T + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 + (-0.266 - 1.50i)T + (-0.939 + 0.342i)T^{2} \) |
| 17 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 23 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 29 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 31 | \( 1 - 0.347T + T^{2} \) |
| 37 | \( 1 + 1.87T + T^{2} \) |
| 41 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 43 | \( 1 + (-0.266 - 0.223i)T + (0.173 + 0.984i)T^{2} \) |
| 47 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 53 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 59 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 61 | \( 1 + (-0.266 - 1.50i)T + (-0.939 + 0.342i)T^{2} \) |
| 67 | \( 1 + (-1.76 - 0.642i)T + (0.766 + 0.642i)T^{2} \) |
| 71 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 73 | \( 1 + (-0.266 - 0.223i)T + (0.173 + 0.984i)T^{2} \) |
| 79 | \( 1 + (-0.0603 + 0.342i)T + (-0.939 - 0.342i)T^{2} \) |
| 83 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 97 | \( 1 + (1.87 - 0.684i)T + (0.766 - 0.642i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.839036635875506689744343577677, −8.650382044158021148447352052988, −7.79453633842501404835591115524, −7.03049023070501881955062667128, −6.50603252113923799294352320884, −5.42865492090309232827935010196, −4.40047188461384447810043274469, −3.76338598162392126990509651957, −2.07289366321321238224563888294, −1.32029729186612737803445188890,
1.86958807628796803968049289906, 2.65381813564669162668896695511, 3.57697497779721537029569596983, 4.99508638760062759611069931061, 5.63030651034592048352119998258, 6.47925228368821255103646689308, 7.51927962535623997856574907179, 8.305065138818329809778676915784, 8.607771762043015982129751714150, 9.692901482578110050797919721123