L(s) = 1 | + (−0.5 − 0.866i)4-s + (0.5 + 0.866i)7-s + (0.5 + 0.866i)13-s + (−0.499 + 0.866i)16-s + 19-s + 25-s + (0.499 − 0.866i)28-s + (0.5 − 0.866i)31-s − 37-s + (0.5 − 0.866i)43-s + (0.499 − 0.866i)52-s − 61-s + 0.999·64-s + (0.5 + 0.866i)67-s + (0.5 + 0.866i)73-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)4-s + (0.5 + 0.866i)7-s + (0.5 + 0.866i)13-s + (−0.499 + 0.866i)16-s + 19-s + 25-s + (0.499 − 0.866i)28-s + (0.5 − 0.866i)31-s − 37-s + (0.5 − 0.866i)43-s + (0.499 − 0.866i)52-s − 61-s + 0.999·64-s + (0.5 + 0.866i)67-s + (0.5 + 0.866i)73-s + ⋯ |
Λ(s)=(=(1539s/2ΓC(s)L(s)(0.999+0.0383i)Λ(1−s)
Λ(s)=(=(1539s/2ΓC(s)L(s)(0.999+0.0383i)Λ(1−s)
Degree: |
2 |
Conductor: |
1539
= 34⋅19
|
Sign: |
0.999+0.0383i
|
Analytic conductor: |
0.768061 |
Root analytic conductor: |
0.876390 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1539(539,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1539, ( :0), 0.999+0.0383i)
|
Particular Values
L(21) |
≈ |
1.080924221 |
L(21) |
≈ |
1.080924221 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 19 | 1−T |
good | 2 | 1+(0.5+0.866i)T2 |
| 5 | 1−T2 |
| 7 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 11 | 1+(0.5−0.866i)T2 |
| 13 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 17 | 1+(0.5−0.866i)T2 |
| 23 | 1+(0.5−0.866i)T2 |
| 29 | 1−T2 |
| 31 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 37 | 1+T+T2 |
| 41 | 1−T2 |
| 43 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 47 | 1−T2 |
| 53 | 1+(0.5+0.866i)T2 |
| 59 | 1−T2 |
| 61 | 1+T+T2 |
| 67 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 71 | 1+(0.5−0.866i)T2 |
| 73 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 79 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 83 | 1+(0.5−0.866i)T2 |
| 89 | 1+(0.5+0.866i)T2 |
| 97 | 1+(1−1.73i)T+(−0.5−0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.498820869443401071869200797126, −8.930049294431894290673833486777, −8.312841096688338056052376035286, −7.14780447582695294703046623662, −6.25167544764299354818661998096, −5.45884459273746572262406937792, −4.82462551101106316752878679549, −3.80936670065825329478914242462, −2.40440856173645691182839201906, −1.30346006937395725879944143999,
1.12656888326601167268129999208, 2.91169442020472748113310662599, 3.62598008450832854572115211491, 4.61906893374022407338417441227, 5.30639795202839473766471746115, 6.59428820174605517888348280638, 7.45854974343366795451643102798, 8.001306040419517469551993195392, 8.740307741070049091456945951617, 9.561817816199146173121503217129