L(s) = 1 | + (−0.5 − 0.866i)4-s + (0.5 + 0.866i)7-s + (0.5 + 0.866i)13-s + (−0.499 + 0.866i)16-s + 19-s + 25-s + (0.499 − 0.866i)28-s + (0.5 − 0.866i)31-s − 37-s + (0.5 − 0.866i)43-s + (0.499 − 0.866i)52-s − 61-s + 0.999·64-s + (0.5 + 0.866i)67-s + (0.5 + 0.866i)73-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)4-s + (0.5 + 0.866i)7-s + (0.5 + 0.866i)13-s + (−0.499 + 0.866i)16-s + 19-s + 25-s + (0.499 − 0.866i)28-s + (0.5 − 0.866i)31-s − 37-s + (0.5 − 0.866i)43-s + (0.499 − 0.866i)52-s − 61-s + 0.999·64-s + (0.5 + 0.866i)67-s + (0.5 + 0.866i)73-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1539 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0383i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1539 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0383i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.080924221\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.080924221\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 19 | \( 1 - T \) |
good | 2 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 5 | \( 1 - T^{2} \) |
| 7 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + T + T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + T + T^{2} \) |
| 67 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.498820869443401071869200797126, −8.930049294431894290673833486777, −8.312841096688338056052376035286, −7.14780447582695294703046623662, −6.25167544764299354818661998096, −5.45884459273746572262406937792, −4.82462551101106316752878679549, −3.80936670065825329478914242462, −2.40440856173645691182839201906, −1.30346006937395725879944143999,
1.12656888326601167268129999208, 2.91169442020472748113310662599, 3.62598008450832854572115211491, 4.61906893374022407338417441227, 5.30639795202839473766471746115, 6.59428820174605517888348280638, 7.45854974343366795451643102798, 8.001306040419517469551993195392, 8.740307741070049091456945951617, 9.561817816199146173121503217129