L(s) = 1 | + 4-s + (0.5 + 0.866i)7-s − 13-s + 16-s + 19-s + (−0.5 + 0.866i)25-s + (0.5 + 0.866i)28-s + (0.5 − 0.866i)31-s − 37-s − 43-s − 52-s + (0.5 − 0.866i)61-s + 64-s − 67-s + (0.5 − 0.866i)73-s + ⋯ |
L(s) = 1 | + 4-s + (0.5 + 0.866i)7-s − 13-s + 16-s + 19-s + (−0.5 + 0.866i)25-s + (0.5 + 0.866i)28-s + (0.5 − 0.866i)31-s − 37-s − 43-s − 52-s + (0.5 − 0.866i)61-s + 64-s − 67-s + (0.5 − 0.866i)73-s + ⋯ |
Λ(s)=(=(1539s/2ΓC(s)L(s)(0.925−0.377i)Λ(1−s)
Λ(s)=(=(1539s/2ΓC(s)L(s)(0.925−0.377i)Λ(1−s)
Degree: |
2 |
Conductor: |
1539
= 34⋅19
|
Sign: |
0.925−0.377i
|
Analytic conductor: |
0.768061 |
Root analytic conductor: |
0.876390 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1539(296,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1539, ( :0), 0.925−0.377i)
|
Particular Values
L(21) |
≈ |
1.436261026 |
L(21) |
≈ |
1.436261026 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 19 | 1−T |
good | 2 | 1−T2 |
| 5 | 1+(0.5−0.866i)T2 |
| 7 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 11 | 1+(0.5−0.866i)T2 |
| 13 | 1+T+T2 |
| 17 | 1+(0.5+0.866i)T2 |
| 23 | 1−T2 |
| 29 | 1+(0.5+0.866i)T2 |
| 31 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 37 | 1+T+T2 |
| 41 | 1+(0.5−0.866i)T2 |
| 43 | 1+T+T2 |
| 47 | 1+(0.5+0.866i)T2 |
| 53 | 1+(0.5−0.866i)T2 |
| 59 | 1+(0.5−0.866i)T2 |
| 61 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 67 | 1+T+T2 |
| 71 | 1+(0.5+0.866i)T2 |
| 73 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 79 | 1+T+T2 |
| 83 | 1+(0.5−0.866i)T2 |
| 89 | 1+(0.5−0.866i)T2 |
| 97 | 1−2T+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.756974307907275416324768914426, −8.911818576233452463272809483768, −7.906277925318936395148503235966, −7.39170794713973624650260959775, −6.47987503532712501661389572456, −5.55592948597905320287143075294, −4.96197525067685487367701666691, −3.50818336541310667620523576584, −2.55077014801167025377895925272, −1.68354271794708447845707629030,
1.33439010228231421956922834015, 2.49616759794252448577206942042, 3.50210846922613935971651846994, 4.63151513257975307605923674579, 5.47842805358497058530141016389, 6.54878749917281417990758012606, 7.25727411380110451526731399073, 7.75709023521877443322407063983, 8.676376175225585669733257482283, 9.957234692703789338578407344723