L(s) = 1 | + 4-s + (0.5 + 0.866i)7-s − 13-s + 16-s + 19-s + (−0.5 + 0.866i)25-s + (0.5 + 0.866i)28-s + (0.5 − 0.866i)31-s − 37-s − 43-s − 52-s + (0.5 − 0.866i)61-s + 64-s − 67-s + (0.5 − 0.866i)73-s + ⋯ |
L(s) = 1 | + 4-s + (0.5 + 0.866i)7-s − 13-s + 16-s + 19-s + (−0.5 + 0.866i)25-s + (0.5 + 0.866i)28-s + (0.5 − 0.866i)31-s − 37-s − 43-s − 52-s + (0.5 − 0.866i)61-s + 64-s − 67-s + (0.5 − 0.866i)73-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1539 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.925 - 0.377i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1539 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.925 - 0.377i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.436261026\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.436261026\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 19 | \( 1 - T \) |
good | 2 | \( 1 - T^{2} \) |
| 5 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 7 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + T + T^{2} \) |
| 17 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + T + T^{2} \) |
| 41 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + T + T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + T + T^{2} \) |
| 71 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 73 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + T + T^{2} \) |
| 83 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 - 2T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.756974307907275416324768914426, −8.911818576233452463272809483768, −7.906277925318936395148503235966, −7.39170794713973624650260959775, −6.47987503532712501661389572456, −5.55592948597905320287143075294, −4.96197525067685487367701666691, −3.50818336541310667620523576584, −2.55077014801167025377895925272, −1.68354271794708447845707629030,
1.33439010228231421956922834015, 2.49616759794252448577206942042, 3.50210846922613935971651846994, 4.63151513257975307605923674579, 5.47842805358497058530141016389, 6.54878749917281417990758012606, 7.25727411380110451526731399073, 7.75709023521877443322407063983, 8.676376175225585669733257482283, 9.957234692703789338578407344723