L(s) = 1 | + (−0.5 + 0.866i)4-s + (−1 + 1.73i)5-s + (0.5 + 0.866i)7-s + (0.5 + 0.866i)11-s + (−0.499 − 0.866i)16-s − 17-s + 19-s + (−0.999 − 1.73i)20-s + (0.5 − 0.866i)23-s + (−1.49 − 2.59i)25-s − 0.999·28-s − 1.99·35-s + (0.5 + 0.866i)43-s − 0.999·44-s + (0.5 + 0.866i)47-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)4-s + (−1 + 1.73i)5-s + (0.5 + 0.866i)7-s + (0.5 + 0.866i)11-s + (−0.499 − 0.866i)16-s − 17-s + 19-s + (−0.999 − 1.73i)20-s + (0.5 − 0.866i)23-s + (−1.49 − 2.59i)25-s − 0.999·28-s − 1.99·35-s + (0.5 + 0.866i)43-s − 0.999·44-s + (0.5 + 0.866i)47-s + ⋯ |
Λ(s)=(=(1539s/2ΓC(s)L(s)(−0.939−0.342i)Λ(1−s)
Λ(s)=(=(1539s/2ΓC(s)L(s)(−0.939−0.342i)Λ(1−s)
Degree: |
2 |
Conductor: |
1539
= 34⋅19
|
Sign: |
−0.939−0.342i
|
Analytic conductor: |
0.768061 |
Root analytic conductor: |
0.876390 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1539(1405,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1539, ( :0), −0.939−0.342i)
|
Particular Values
L(21) |
≈ |
0.7785667866 |
L(21) |
≈ |
0.7785667866 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 19 | 1−T |
good | 2 | 1+(0.5−0.866i)T2 |
| 5 | 1+(1−1.73i)T+(−0.5−0.866i)T2 |
| 7 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 11 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 13 | 1+(0.5+0.866i)T2 |
| 17 | 1+T+T2 |
| 23 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 29 | 1+(0.5−0.866i)T2 |
| 31 | 1+(0.5+0.866i)T2 |
| 37 | 1−T2 |
| 41 | 1+(0.5+0.866i)T2 |
| 43 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 47 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 53 | 1−T2 |
| 59 | 1+(0.5+0.866i)T2 |
| 61 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 67 | 1+(0.5+0.866i)T2 |
| 71 | 1−T2 |
| 73 | 1+T+T2 |
| 79 | 1+(0.5−0.866i)T2 |
| 83 | 1+(1+1.73i)T+(−0.5+0.866i)T2 |
| 89 | 1−T2 |
| 97 | 1+(0.5−0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.991254375442355384779665473360, −9.058530300766132568082353512907, −8.346198557202789518640600511744, −7.46121563503960108225571751684, −7.08203191634842699397075795090, −6.14373512733645951645331919850, −4.72118727351530114599418890414, −4.07023875252508139076595206675, −3.04431156110291739140011353220, −2.38859209161679823867295914143,
0.69206603536665633115030562796, 1.47346561983698824087167778859, 3.69854526041394775218606109420, 4.28821936830943606031486906638, 5.07712747365096459048640149400, 5.67640108097000367348816951767, 7.01425878384551667760183793133, 7.84820460346061225194974113133, 8.710558031456455191830366852290, 9.054462350221225449902312093549