L(s) = 1 | + (−0.5 + 0.866i)4-s + (−1 + 1.73i)5-s + (0.5 + 0.866i)7-s + (0.5 + 0.866i)11-s + (−0.499 − 0.866i)16-s − 17-s + 19-s + (−0.999 − 1.73i)20-s + (0.5 − 0.866i)23-s + (−1.49 − 2.59i)25-s − 0.999·28-s − 1.99·35-s + (0.5 + 0.866i)43-s − 0.999·44-s + (0.5 + 0.866i)47-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.866i)4-s + (−1 + 1.73i)5-s + (0.5 + 0.866i)7-s + (0.5 + 0.866i)11-s + (−0.499 − 0.866i)16-s − 17-s + 19-s + (−0.999 − 1.73i)20-s + (0.5 − 0.866i)23-s + (−1.49 − 2.59i)25-s − 0.999·28-s − 1.99·35-s + (0.5 + 0.866i)43-s − 0.999·44-s + (0.5 + 0.866i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1539 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.939 - 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1539 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.939 - 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7785667866\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7785667866\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 19 | \( 1 - T \) |
good | 2 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 5 | \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 7 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + T + T^{2} \) |
| 23 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + T + T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.991254375442355384779665473360, −9.058530300766132568082353512907, −8.346198557202789518640600511744, −7.46121563503960108225571751684, −7.08203191634842699397075795090, −6.14373512733645951645331919850, −4.72118727351530114599418890414, −4.07023875252508139076595206675, −3.04431156110291739140011353220, −2.38859209161679823867295914143,
0.69206603536665633115030562796, 1.47346561983698824087167778859, 3.69854526041394775218606109420, 4.28821936830943606031486906638, 5.07712747365096459048640149400, 5.67640108097000367348816951767, 7.01425878384551667760183793133, 7.84820460346061225194974113133, 8.710558031456455191830366852290, 9.054462350221225449902312093549