Properties

Label 2-1539-171.94-c0-0-0
Degree $2$
Conductor $1539$
Sign $-0.939 - 0.342i$
Analytic cond. $0.768061$
Root an. cond. $0.876390$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 + 0.866i)4-s + (−1 + 1.73i)5-s + (0.5 + 0.866i)7-s + (0.5 + 0.866i)11-s + (−0.499 − 0.866i)16-s − 17-s + 19-s + (−0.999 − 1.73i)20-s + (0.5 − 0.866i)23-s + (−1.49 − 2.59i)25-s − 0.999·28-s − 1.99·35-s + (0.5 + 0.866i)43-s − 0.999·44-s + (0.5 + 0.866i)47-s + ⋯
L(s)  = 1  + (−0.5 + 0.866i)4-s + (−1 + 1.73i)5-s + (0.5 + 0.866i)7-s + (0.5 + 0.866i)11-s + (−0.499 − 0.866i)16-s − 17-s + 19-s + (−0.999 − 1.73i)20-s + (0.5 − 0.866i)23-s + (−1.49 − 2.59i)25-s − 0.999·28-s − 1.99·35-s + (0.5 + 0.866i)43-s − 0.999·44-s + (0.5 + 0.866i)47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1539 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.939 - 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1539 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.939 - 0.342i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1539\)    =    \(3^{4} \cdot 19\)
Sign: $-0.939 - 0.342i$
Analytic conductor: \(0.768061\)
Root analytic conductor: \(0.876390\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{1539} (1405, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1539,\ (\ :0),\ -0.939 - 0.342i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.7785667866\)
\(L(\frac12)\) \(\approx\) \(0.7785667866\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
19 \( 1 - T \)
good2 \( 1 + (0.5 - 0.866i)T^{2} \)
5 \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \)
7 \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \)
11 \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \)
13 \( 1 + (0.5 + 0.866i)T^{2} \)
17 \( 1 + T + T^{2} \)
23 \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \)
29 \( 1 + (0.5 - 0.866i)T^{2} \)
31 \( 1 + (0.5 + 0.866i)T^{2} \)
37 \( 1 - T^{2} \)
41 \( 1 + (0.5 + 0.866i)T^{2} \)
43 \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \)
47 \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \)
53 \( 1 - T^{2} \)
59 \( 1 + (0.5 + 0.866i)T^{2} \)
61 \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \)
67 \( 1 + (0.5 + 0.866i)T^{2} \)
71 \( 1 - T^{2} \)
73 \( 1 + T + T^{2} \)
79 \( 1 + (0.5 - 0.866i)T^{2} \)
83 \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \)
89 \( 1 - T^{2} \)
97 \( 1 + (0.5 - 0.866i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.991254375442355384779665473360, −9.058530300766132568082353512907, −8.346198557202789518640600511744, −7.46121563503960108225571751684, −7.08203191634842699397075795090, −6.14373512733645951645331919850, −4.72118727351530114599418890414, −4.07023875252508139076595206675, −3.04431156110291739140011353220, −2.38859209161679823867295914143, 0.69206603536665633115030562796, 1.47346561983698824087167778859, 3.69854526041394775218606109420, 4.28821936830943606031486906638, 5.07712747365096459048640149400, 5.67640108097000367348816951767, 7.01425878384551667760183793133, 7.84820460346061225194974113133, 8.710558031456455191830366852290, 9.054462350221225449902312093549

Graph of the $Z$-function along the critical line