L(s) = 1 | + (0.960 − 1.03i)2-s + (1.58 − 0.687i)3-s + (−0.154 − 1.99i)4-s + 0.716i·5-s + (0.812 − 2.31i)6-s + 4.43i·7-s + (−2.21 − 1.75i)8-s + (2.05 − 2.18i)9-s + (0.743 + 0.687i)10-s − 6.03·11-s + (−1.61 − 3.06i)12-s − 13-s + (4.60 + 4.26i)14-s + (0.492 + 1.13i)15-s + (−3.95 + 0.618i)16-s − 2.94i·17-s + ⋯ |
L(s) = 1 | + (0.679 − 0.733i)2-s + (0.917 − 0.397i)3-s + (−0.0774 − 0.996i)4-s + 0.320i·5-s + (0.331 − 0.943i)6-s + 1.67i·7-s + (−0.784 − 0.620i)8-s + (0.684 − 0.729i)9-s + (0.235 + 0.217i)10-s − 1.81·11-s + (−0.467 − 0.884i)12-s − 0.277·13-s + (1.23 + 1.13i)14-s + (0.127 + 0.293i)15-s + (−0.987 + 0.154i)16-s − 0.713i·17-s + ⋯ |
Λ(s)=(=(156s/2ΓC(s)L(s)(0.467+0.884i)Λ(2−s)
Λ(s)=(=(156s/2ΓC(s+1/2)L(s)(0.467+0.884i)Λ(1−s)
Degree: |
2 |
Conductor: |
156
= 22⋅3⋅13
|
Sign: |
0.467+0.884i
|
Analytic conductor: |
1.24566 |
Root analytic conductor: |
1.11609 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ156(131,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 156, ( :1/2), 0.467+0.884i)
|
Particular Values
L(1) |
≈ |
1.57936−0.951855i |
L(21) |
≈ |
1.57936−0.951855i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.960+1.03i)T |
| 3 | 1+(−1.58+0.687i)T |
| 13 | 1+T |
good | 5 | 1−0.716iT−5T2 |
| 7 | 1−4.43iT−7T2 |
| 11 | 1+6.03T+11T2 |
| 17 | 1+2.94iT−17T2 |
| 19 | 1−2.16iT−19T2 |
| 23 | 1−2.19T+23T2 |
| 29 | 1−29T2 |
| 31 | 1+3.96iT−31T2 |
| 37 | 1−4.10T+37T2 |
| 41 | 1+6.07iT−41T2 |
| 43 | 1−7.50iT−43T2 |
| 47 | 1−5.69T+47T2 |
| 53 | 1−5.88iT−53T2 |
| 59 | 1+1.64T+59T2 |
| 61 | 1+4.61T+61T2 |
| 67 | 1+11.9iT−67T2 |
| 71 | 1−0.662T+71T2 |
| 73 | 1+4.97T+73T2 |
| 79 | 1+7.02iT−79T2 |
| 83 | 1+6.68T+83T2 |
| 89 | 1−8.94iT−89T2 |
| 97 | 1−8.97T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.73630365763841964349919495866, −12.12018516498643819460928182417, −10.87448893152527634845424028875, −9.720794381400717298732480480385, −8.826518512059402169022260013014, −7.59031517640076498515151293366, −6.03701519471094596629021970624, −4.93619221721226111405565696799, −2.96073653776463315200662963692, −2.37890225537026527212097491878,
2.94059708618874096996455615974, 4.24485580028050687151235782865, 5.12894265262279994750050021954, 7.03325382580897807570531391212, 7.75432627949254005961053312274, 8.651117713411137678286653124093, 10.12645860781462023534052498257, 10.90382172952260660914357922515, 12.84060327274708170735024336743, 13.21116036768967273904336797255