L(s) = 1 | + (0.960 − 1.03i)2-s + (1.58 − 0.687i)3-s + (−0.154 − 1.99i)4-s + 0.716i·5-s + (0.812 − 2.31i)6-s + 4.43i·7-s + (−2.21 − 1.75i)8-s + (2.05 − 2.18i)9-s + (0.743 + 0.687i)10-s − 6.03·11-s + (−1.61 − 3.06i)12-s − 13-s + (4.60 + 4.26i)14-s + (0.492 + 1.13i)15-s + (−3.95 + 0.618i)16-s − 2.94i·17-s + ⋯ |
L(s) = 1 | + (0.679 − 0.733i)2-s + (0.917 − 0.397i)3-s + (−0.0774 − 0.996i)4-s + 0.320i·5-s + (0.331 − 0.943i)6-s + 1.67i·7-s + (−0.784 − 0.620i)8-s + (0.684 − 0.729i)9-s + (0.235 + 0.217i)10-s − 1.81·11-s + (−0.467 − 0.884i)12-s − 0.277·13-s + (1.23 + 1.13i)14-s + (0.127 + 0.293i)15-s + (−0.987 + 0.154i)16-s − 0.713i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.467 + 0.884i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 156 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.467 + 0.884i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.57936 - 0.951855i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.57936 - 0.951855i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.960 + 1.03i)T \) |
| 3 | \( 1 + (-1.58 + 0.687i)T \) |
| 13 | \( 1 + T \) |
good | 5 | \( 1 - 0.716iT - 5T^{2} \) |
| 7 | \( 1 - 4.43iT - 7T^{2} \) |
| 11 | \( 1 + 6.03T + 11T^{2} \) |
| 17 | \( 1 + 2.94iT - 17T^{2} \) |
| 19 | \( 1 - 2.16iT - 19T^{2} \) |
| 23 | \( 1 - 2.19T + 23T^{2} \) |
| 29 | \( 1 - 29T^{2} \) |
| 31 | \( 1 + 3.96iT - 31T^{2} \) |
| 37 | \( 1 - 4.10T + 37T^{2} \) |
| 41 | \( 1 + 6.07iT - 41T^{2} \) |
| 43 | \( 1 - 7.50iT - 43T^{2} \) |
| 47 | \( 1 - 5.69T + 47T^{2} \) |
| 53 | \( 1 - 5.88iT - 53T^{2} \) |
| 59 | \( 1 + 1.64T + 59T^{2} \) |
| 61 | \( 1 + 4.61T + 61T^{2} \) |
| 67 | \( 1 + 11.9iT - 67T^{2} \) |
| 71 | \( 1 - 0.662T + 71T^{2} \) |
| 73 | \( 1 + 4.97T + 73T^{2} \) |
| 79 | \( 1 + 7.02iT - 79T^{2} \) |
| 83 | \( 1 + 6.68T + 83T^{2} \) |
| 89 | \( 1 - 8.94iT - 89T^{2} \) |
| 97 | \( 1 - 8.97T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.73630365763841964349919495866, −12.12018516498643819460928182417, −10.87448893152527634845424028875, −9.720794381400717298732480480385, −8.826518512059402169022260013014, −7.59031517640076498515151293366, −6.03701519471094596629021970624, −4.93619221721226111405565696799, −2.96073653776463315200662963692, −2.37890225537026527212097491878,
2.94059708618874096996455615974, 4.24485580028050687151235782865, 5.12894265262279994750050021954, 7.03325382580897807570531391212, 7.75432627949254005961053312274, 8.651117713411137678286653124093, 10.12645860781462023534052498257, 10.90382172952260660914357922515, 12.84060327274708170735024336743, 13.21116036768967273904336797255