L(s) = 1 | + (0.5 + 0.866i)3-s − 1.73i·5-s + (3 + 1.73i)7-s + (−0.499 + 0.866i)9-s + (3 − 1.73i)11-s + (−2.5 + 2.59i)13-s + (1.49 − 0.866i)15-s + (−1.5 + 2.59i)17-s + (−3 − 1.73i)19-s + 3.46i·21-s + (−3 − 5.19i)23-s + 2.00·25-s − 0.999·27-s + (−4.5 − 7.79i)29-s + (3 + 1.73i)33-s + ⋯ |
L(s) = 1 | + (0.288 + 0.499i)3-s − 0.774i·5-s + (1.13 + 0.654i)7-s + (−0.166 + 0.288i)9-s + (0.904 − 0.522i)11-s + (−0.693 + 0.720i)13-s + (0.387 − 0.223i)15-s + (−0.363 + 0.630i)17-s + (−0.688 − 0.397i)19-s + 0.755i·21-s + (−0.625 − 1.08i)23-s + 0.400·25-s − 0.192·27-s + (−0.835 − 1.44i)29-s + (0.522 + 0.301i)33-s + ⋯ |
Λ(s)=(=(156s/2ΓC(s)L(s)(0.964−0.265i)Λ(2−s)
Λ(s)=(=(156s/2ΓC(s+1/2)L(s)(0.964−0.265i)Λ(1−s)
Degree: |
2 |
Conductor: |
156
= 22⋅3⋅13
|
Sign: |
0.964−0.265i
|
Analytic conductor: |
1.24566 |
Root analytic conductor: |
1.11609 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ156(49,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 156, ( :1/2), 0.964−0.265i)
|
Particular Values
L(1) |
≈ |
1.29705+0.174992i |
L(21) |
≈ |
1.29705+0.174992i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−0.5−0.866i)T |
| 13 | 1+(2.5−2.59i)T |
good | 5 | 1+1.73iT−5T2 |
| 7 | 1+(−3−1.73i)T+(3.5+6.06i)T2 |
| 11 | 1+(−3+1.73i)T+(5.5−9.52i)T2 |
| 17 | 1+(1.5−2.59i)T+(−8.5−14.7i)T2 |
| 19 | 1+(3+1.73i)T+(9.5+16.4i)T2 |
| 23 | 1+(3+5.19i)T+(−11.5+19.9i)T2 |
| 29 | 1+(4.5+7.79i)T+(−14.5+25.1i)T2 |
| 31 | 1−31T2 |
| 37 | 1+(4.5−2.59i)T+(18.5−32.0i)T2 |
| 41 | 1+(7.5−4.33i)T+(20.5−35.5i)T2 |
| 43 | 1+(1−1.73i)T+(−21.5−37.2i)T2 |
| 47 | 1−3.46iT−47T2 |
| 53 | 1+9T+53T2 |
| 59 | 1+(−12−6.92i)T+(29.5+51.0i)T2 |
| 61 | 1+(−5.5+9.52i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−9+5.19i)T+(33.5−58.0i)T2 |
| 71 | 1+(−9−5.19i)T+(35.5+61.4i)T2 |
| 73 | 1−5.19iT−73T2 |
| 79 | 1+8T+79T2 |
| 83 | 1+3.46iT−83T2 |
| 89 | 1+(6−3.46i)T+(44.5−77.0i)T2 |
| 97 | 1+(−6−3.46i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.92969730931887237355674837410, −11.86023146607430678276249578473, −11.15827558278724835044081022692, −9.761667962638959940247021542591, −8.711229340482488262986780144509, −8.249799728223798369499347931976, −6.45984664369464484242152134746, −5.02783433508979592011012781687, −4.16420577549207164277272409888, −2.04421677189285670853746386208,
1.87434699414572112069597478785, 3.64827924370899148887378178731, 5.16726744818237835871522606195, 6.86948085074299929749018448082, 7.44773090777286749523056087306, 8.623581491597419451792796482663, 9.962720711660750300781971406164, 10.96526636825649627149395754262, 11.84788915870168825750305157953, 12.91720984623017817836612683453