L(s) = 1 | + (0.5 + 0.866i)3-s + 2·5-s + (−0.5 + 0.866i)7-s + (−0.499 + 0.866i)9-s + (−1 − 1.73i)11-s + (2.5 + 2.59i)13-s + (1 + 1.73i)15-s + (2 − 3.46i)17-s + (−2 + 3.46i)19-s − 0.999·21-s + (−3 − 5.19i)23-s − 25-s − 0.999·27-s + (−3 − 5.19i)29-s − 31-s + ⋯ |
L(s) = 1 | + (0.288 + 0.499i)3-s + 0.894·5-s + (−0.188 + 0.327i)7-s + (−0.166 + 0.288i)9-s + (−0.301 − 0.522i)11-s + (0.693 + 0.720i)13-s + (0.258 + 0.447i)15-s + (0.485 − 0.840i)17-s + (−0.458 + 0.794i)19-s − 0.218·21-s + (−0.625 − 1.08i)23-s − 0.200·25-s − 0.192·27-s + (−0.557 − 0.964i)29-s − 0.179·31-s + ⋯ |
Λ(s)=(=(156s/2ΓC(s)L(s)(0.872−0.488i)Λ(2−s)
Λ(s)=(=(156s/2ΓC(s+1/2)L(s)(0.872−0.488i)Λ(1−s)
Degree: |
2 |
Conductor: |
156
= 22⋅3⋅13
|
Sign: |
0.872−0.488i
|
Analytic conductor: |
1.24566 |
Root analytic conductor: |
1.11609 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ156(133,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 156, ( :1/2), 0.872−0.488i)
|
Particular Values
L(1) |
≈ |
1.28992+0.336785i |
L(21) |
≈ |
1.28992+0.336785i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−0.5−0.866i)T |
| 13 | 1+(−2.5−2.59i)T |
good | 5 | 1−2T+5T2 |
| 7 | 1+(0.5−0.866i)T+(−3.5−6.06i)T2 |
| 11 | 1+(1+1.73i)T+(−5.5+9.52i)T2 |
| 17 | 1+(−2+3.46i)T+(−8.5−14.7i)T2 |
| 19 | 1+(2−3.46i)T+(−9.5−16.4i)T2 |
| 23 | 1+(3+5.19i)T+(−11.5+19.9i)T2 |
| 29 | 1+(3+5.19i)T+(−14.5+25.1i)T2 |
| 31 | 1+T+31T2 |
| 37 | 1+(5+8.66i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−2−3.46i)T+(−20.5+35.5i)T2 |
| 43 | 1+(0.5−0.866i)T+(−21.5−37.2i)T2 |
| 47 | 1+10T+47T2 |
| 53 | 1−8T+53T2 |
| 59 | 1+(−1+1.73i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−2.5+4.33i)T+(−30.5−52.8i)T2 |
| 67 | 1+(−3.5−6.06i)T+(−33.5+58.0i)T2 |
| 71 | 1+(5−8.66i)T+(−35.5−61.4i)T2 |
| 73 | 1+7T+73T2 |
| 79 | 1−17T+79T2 |
| 83 | 1−12T+83T2 |
| 89 | 1+(−8−13.8i)T+(−44.5+77.0i)T2 |
| 97 | 1+(6.5−11.2i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.22929405833091896234376980300, −12.00842269388811516573612185027, −10.85887723372832577648194829179, −9.882345580425580149407445116653, −9.084440555132997721424777055273, −8.020467363895559666625534347247, −6.37012680269715102469464767428, −5.46363969577617734799272243899, −3.88926409756123921838097094583, −2.28208696086453269741944568752,
1.79363522398815726296353600104, 3.49047385926898507688183167604, 5.36033811416728972105281609698, 6.42820135966026690877177030048, 7.60133923080677457889925424303, 8.712898833827552243344155258594, 9.875127469912000617867265813772, 10.67066691721290065628693802890, 12.04717154581598833067683578174, 13.22413003857927670446620885563