L(s) = 1 | + (−1.39 − 0.254i)2-s + (0.564 + 1.63i)3-s + (1.87 + 0.707i)4-s + 3.40i·5-s + (−0.369 − 2.42i)6-s + (−2.05 − 1.18i)7-s + (−2.42 − 1.45i)8-s + (−2.36 + 1.84i)9-s + (0.865 − 4.73i)10-s + (−1.63 − 2.82i)11-s + (−0.101 + 3.46i)12-s + (2.06 + 2.95i)13-s + (2.56 + 2.17i)14-s + (−5.57 + 1.92i)15-s + (2.99 + 2.64i)16-s + (−0.380 − 0.219i)17-s + ⋯ |
L(s) = 1 | + (−0.983 − 0.179i)2-s + (0.326 + 0.945i)3-s + (0.935 + 0.353i)4-s + 1.52i·5-s + (−0.150 − 0.988i)6-s + (−0.777 − 0.449i)7-s + (−0.856 − 0.516i)8-s + (−0.787 + 0.616i)9-s + (0.273 − 1.49i)10-s + (−0.492 − 0.852i)11-s + (−0.0293 + 0.999i)12-s + (0.571 + 0.820i)13-s + (0.684 + 0.581i)14-s + (−1.43 + 0.496i)15-s + (0.749 + 0.661i)16-s + (−0.0922 − 0.0532i)17-s + ⋯ |
Λ(s)=(=(156s/2ΓC(s)L(s)(−0.318−0.947i)Λ(2−s)
Λ(s)=(=(156s/2ΓC(s+1/2)L(s)(−0.318−0.947i)Λ(1−s)
Degree: |
2 |
Conductor: |
156
= 22⋅3⋅13
|
Sign: |
−0.318−0.947i
|
Analytic conductor: |
1.24566 |
Root analytic conductor: |
1.11609 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ156(107,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 156, ( :1/2), −0.318−0.947i)
|
Particular Values
L(1) |
≈ |
0.414081+0.575960i |
L(21) |
≈ |
0.414081+0.575960i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.39+0.254i)T |
| 3 | 1+(−0.564−1.63i)T |
| 13 | 1+(−2.06−2.95i)T |
good | 5 | 1−3.40iT−5T2 |
| 7 | 1+(2.05+1.18i)T+(3.5+6.06i)T2 |
| 11 | 1+(1.63+2.82i)T+(−5.5+9.52i)T2 |
| 17 | 1+(0.380+0.219i)T+(8.5+14.7i)T2 |
| 19 | 1+(−2.98−1.72i)T+(9.5+16.4i)T2 |
| 23 | 1+(−3.46−6.00i)T+(−11.5+19.9i)T2 |
| 29 | 1+(−7.57+4.37i)T+(14.5−25.1i)T2 |
| 31 | 1−0.323iT−31T2 |
| 37 | 1+(−1.58−2.74i)T+(−18.5+32.0i)T2 |
| 41 | 1+(−1.42+0.823i)T+(20.5−35.5i)T2 |
| 43 | 1+(−0.845−0.488i)T+(21.5+37.2i)T2 |
| 47 | 1−2.05T+47T2 |
| 53 | 1−5.71iT−53T2 |
| 59 | 1+(−2.43+4.21i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−6.60+11.4i)T+(−30.5−52.8i)T2 |
| 67 | 1+(3.51−2.03i)T+(33.5−58.0i)T2 |
| 71 | 1+(−0.174+0.302i)T+(−35.5−61.4i)T2 |
| 73 | 1+5.87T+73T2 |
| 79 | 1−13.0iT−79T2 |
| 83 | 1+1.55T+83T2 |
| 89 | 1+(−10.7+6.19i)T+(44.5−77.0i)T2 |
| 97 | 1+(−0.991+1.71i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.50132933006216811539581313465, −11.58243899290019791221875384181, −10.97229735445079802177858407475, −10.15772456876450968452991807603, −9.458229287505415245878451995668, −8.205700659353552018685369355694, −7.04750366312889527530628247538, −6.02124092471671874435601580865, −3.60513390079610943032977185867, −2.84964818474961997325598018704,
0.932436248914981498181819188417, 2.70126799880185851266631645857, 5.23375251624566584066562585352, 6.42972377404300305736652060113, 7.61899150218481839798599385319, 8.628521201518085571955480566679, 9.133836141034799932135789775201, 10.36470438088096865809809620446, 11.91124749900907373354332538119, 12.63667238517546045644213749631