Properties

Label 2-156-156.107-c1-0-1
Degree $2$
Conductor $156$
Sign $-0.318 - 0.947i$
Analytic cond. $1.24566$
Root an. cond. $1.11609$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.39 − 0.254i)2-s + (0.564 + 1.63i)3-s + (1.87 + 0.707i)4-s + 3.40i·5-s + (−0.369 − 2.42i)6-s + (−2.05 − 1.18i)7-s + (−2.42 − 1.45i)8-s + (−2.36 + 1.84i)9-s + (0.865 − 4.73i)10-s + (−1.63 − 2.82i)11-s + (−0.101 + 3.46i)12-s + (2.06 + 2.95i)13-s + (2.56 + 2.17i)14-s + (−5.57 + 1.92i)15-s + (2.99 + 2.64i)16-s + (−0.380 − 0.219i)17-s + ⋯
L(s)  = 1  + (−0.983 − 0.179i)2-s + (0.326 + 0.945i)3-s + (0.935 + 0.353i)4-s + 1.52i·5-s + (−0.150 − 0.988i)6-s + (−0.777 − 0.449i)7-s + (−0.856 − 0.516i)8-s + (−0.787 + 0.616i)9-s + (0.273 − 1.49i)10-s + (−0.492 − 0.852i)11-s + (−0.0293 + 0.999i)12-s + (0.571 + 0.820i)13-s + (0.684 + 0.581i)14-s + (−1.43 + 0.496i)15-s + (0.749 + 0.661i)16-s + (−0.0922 − 0.0532i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.318 - 0.947i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 156 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.318 - 0.947i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(156\)    =    \(2^{2} \cdot 3 \cdot 13\)
Sign: $-0.318 - 0.947i$
Analytic conductor: \(1.24566\)
Root analytic conductor: \(1.11609\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{156} (107, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 156,\ (\ :1/2),\ -0.318 - 0.947i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.414081 + 0.575960i\)
\(L(\frac12)\) \(\approx\) \(0.414081 + 0.575960i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.39 + 0.254i)T \)
3 \( 1 + (-0.564 - 1.63i)T \)
13 \( 1 + (-2.06 - 2.95i)T \)
good5 \( 1 - 3.40iT - 5T^{2} \)
7 \( 1 + (2.05 + 1.18i)T + (3.5 + 6.06i)T^{2} \)
11 \( 1 + (1.63 + 2.82i)T + (-5.5 + 9.52i)T^{2} \)
17 \( 1 + (0.380 + 0.219i)T + (8.5 + 14.7i)T^{2} \)
19 \( 1 + (-2.98 - 1.72i)T + (9.5 + 16.4i)T^{2} \)
23 \( 1 + (-3.46 - 6.00i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (-7.57 + 4.37i)T + (14.5 - 25.1i)T^{2} \)
31 \( 1 - 0.323iT - 31T^{2} \)
37 \( 1 + (-1.58 - 2.74i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (-1.42 + 0.823i)T + (20.5 - 35.5i)T^{2} \)
43 \( 1 + (-0.845 - 0.488i)T + (21.5 + 37.2i)T^{2} \)
47 \( 1 - 2.05T + 47T^{2} \)
53 \( 1 - 5.71iT - 53T^{2} \)
59 \( 1 + (-2.43 + 4.21i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (-6.60 + 11.4i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + (3.51 - 2.03i)T + (33.5 - 58.0i)T^{2} \)
71 \( 1 + (-0.174 + 0.302i)T + (-35.5 - 61.4i)T^{2} \)
73 \( 1 + 5.87T + 73T^{2} \)
79 \( 1 - 13.0iT - 79T^{2} \)
83 \( 1 + 1.55T + 83T^{2} \)
89 \( 1 + (-10.7 + 6.19i)T + (44.5 - 77.0i)T^{2} \)
97 \( 1 + (-0.991 + 1.71i)T + (-48.5 - 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.50132933006216811539581313465, −11.58243899290019791221875384181, −10.97229735445079802177858407475, −10.15772456876450968452991807603, −9.458229287505415245878451995668, −8.205700659353552018685369355694, −7.04750366312889527530628247538, −6.02124092471671874435601580865, −3.60513390079610943032977185867, −2.84964818474961997325598018704, 0.932436248914981498181819188417, 2.70126799880185851266631645857, 5.23375251624566584066562585352, 6.42972377404300305736652060113, 7.61899150218481839798599385319, 8.628521201518085571955480566679, 9.133836141034799932135789775201, 10.36470438088096865809809620446, 11.91124749900907373354332538119, 12.63667238517546045644213749631

Graph of the $Z$-function along the critical line