L(s) = 1 | + (−1.39 − 0.254i)2-s + (0.564 + 1.63i)3-s + (1.87 + 0.707i)4-s + 3.40i·5-s + (−0.369 − 2.42i)6-s + (−2.05 − 1.18i)7-s + (−2.42 − 1.45i)8-s + (−2.36 + 1.84i)9-s + (0.865 − 4.73i)10-s + (−1.63 − 2.82i)11-s + (−0.101 + 3.46i)12-s + (2.06 + 2.95i)13-s + (2.56 + 2.17i)14-s + (−5.57 + 1.92i)15-s + (2.99 + 2.64i)16-s + (−0.380 − 0.219i)17-s + ⋯ |
L(s) = 1 | + (−0.983 − 0.179i)2-s + (0.326 + 0.945i)3-s + (0.935 + 0.353i)4-s + 1.52i·5-s + (−0.150 − 0.988i)6-s + (−0.777 − 0.449i)7-s + (−0.856 − 0.516i)8-s + (−0.787 + 0.616i)9-s + (0.273 − 1.49i)10-s + (−0.492 − 0.852i)11-s + (−0.0293 + 0.999i)12-s + (0.571 + 0.820i)13-s + (0.684 + 0.581i)14-s + (−1.43 + 0.496i)15-s + (0.749 + 0.661i)16-s + (−0.0922 − 0.0532i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 156 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.318 - 0.947i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 156 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.318 - 0.947i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.414081 + 0.575960i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.414081 + 0.575960i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.39 + 0.254i)T \) |
| 3 | \( 1 + (-0.564 - 1.63i)T \) |
| 13 | \( 1 + (-2.06 - 2.95i)T \) |
good | 5 | \( 1 - 3.40iT - 5T^{2} \) |
| 7 | \( 1 + (2.05 + 1.18i)T + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (1.63 + 2.82i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (0.380 + 0.219i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-2.98 - 1.72i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.46 - 6.00i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-7.57 + 4.37i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 0.323iT - 31T^{2} \) |
| 37 | \( 1 + (-1.58 - 2.74i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-1.42 + 0.823i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.845 - 0.488i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 2.05T + 47T^{2} \) |
| 53 | \( 1 - 5.71iT - 53T^{2} \) |
| 59 | \( 1 + (-2.43 + 4.21i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-6.60 + 11.4i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (3.51 - 2.03i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-0.174 + 0.302i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 5.87T + 73T^{2} \) |
| 79 | \( 1 - 13.0iT - 79T^{2} \) |
| 83 | \( 1 + 1.55T + 83T^{2} \) |
| 89 | \( 1 + (-10.7 + 6.19i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-0.991 + 1.71i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.50132933006216811539581313465, −11.58243899290019791221875384181, −10.97229735445079802177858407475, −10.15772456876450968452991807603, −9.458229287505415245878451995668, −8.205700659353552018685369355694, −7.04750366312889527530628247538, −6.02124092471671874435601580865, −3.60513390079610943032977185867, −2.84964818474961997325598018704,
0.932436248914981498181819188417, 2.70126799880185851266631645857, 5.23375251624566584066562585352, 6.42972377404300305736652060113, 7.61899150218481839798599385319, 8.628521201518085571955480566679, 9.133836141034799932135789775201, 10.36470438088096865809809620446, 11.91124749900907373354332538119, 12.63667238517546045644213749631