L(s) = 1 | + (−0.415 + 0.909i)2-s + (1.89 + 0.557i)3-s + (−0.654 − 0.755i)4-s + (−1.29 + 1.49i)6-s + (−0.215 + 1.49i)7-s + (0.959 − 0.281i)8-s + (2.45 + 1.57i)9-s + (−0.234 − 0.512i)11-s + (−0.822 − 1.80i)12-s + (−0.186 − 1.29i)13-s + (−1.27 − 0.817i)14-s + (−0.142 + 0.989i)16-s + (−0.654 + 0.755i)17-s + (−2.45 + 1.57i)18-s + (−1.24 + 2.72i)21-s + 0.563·22-s + ⋯ |
L(s) = 1 | + (−0.415 + 0.909i)2-s + (1.89 + 0.557i)3-s + (−0.654 − 0.755i)4-s + (−1.29 + 1.49i)6-s + (−0.215 + 1.49i)7-s + (0.959 − 0.281i)8-s + (2.45 + 1.57i)9-s + (−0.234 − 0.512i)11-s + (−0.822 − 1.80i)12-s + (−0.186 − 1.29i)13-s + (−1.27 − 0.817i)14-s + (−0.142 + 0.989i)16-s + (−0.654 + 0.755i)17-s + (−2.45 + 1.57i)18-s + (−1.24 + 2.72i)21-s + 0.563·22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1564 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.305 - 0.952i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1564 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.305 - 0.952i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.560161940\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.560161940\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.415 - 0.909i)T \) |
| 17 | \( 1 + (0.654 - 0.755i)T \) |
| 23 | \( 1 + (0.755 + 0.654i)T \) |
good | 3 | \( 1 + (-1.89 - 0.557i)T + (0.841 + 0.540i)T^{2} \) |
| 5 | \( 1 + (-0.415 + 0.909i)T^{2} \) |
| 7 | \( 1 + (0.215 - 1.49i)T + (-0.959 - 0.281i)T^{2} \) |
| 11 | \( 1 + (0.234 + 0.512i)T + (-0.654 + 0.755i)T^{2} \) |
| 13 | \( 1 + (0.186 + 1.29i)T + (-0.959 + 0.281i)T^{2} \) |
| 19 | \( 1 + (0.142 - 0.989i)T^{2} \) |
| 29 | \( 1 + (0.142 + 0.989i)T^{2} \) |
| 31 | \( 1 + (0.540 - 0.158i)T + (0.841 - 0.540i)T^{2} \) |
| 37 | \( 1 + (-0.415 - 0.909i)T^{2} \) |
| 41 | \( 1 + (-0.415 + 0.909i)T^{2} \) |
| 43 | \( 1 + (-0.841 - 0.540i)T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + (-0.273 + 1.89i)T + (-0.959 - 0.281i)T^{2} \) |
| 59 | \( 1 + (0.959 - 0.281i)T^{2} \) |
| 61 | \( 1 + (-0.841 + 0.540i)T^{2} \) |
| 67 | \( 1 + (0.654 + 0.755i)T^{2} \) |
| 71 | \( 1 + (-0.654 - 0.755i)T^{2} \) |
| 73 | \( 1 + (0.142 - 0.989i)T^{2} \) |
| 79 | \( 1 + (-0.258 - 1.80i)T + (-0.959 + 0.281i)T^{2} \) |
| 83 | \( 1 + (-0.415 - 0.909i)T^{2} \) |
| 89 | \( 1 + (1.84 + 0.540i)T + (0.841 + 0.540i)T^{2} \) |
| 97 | \( 1 + (-0.415 + 0.909i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.632107505430983542454933572559, −8.624679519049711754216977210165, −8.510502013640778459804720491821, −7.938142060747297639536298179298, −6.83578934292064584682563097815, −5.80197678482934667547505127992, −4.95875537786533063104343341717, −3.91731601232397304558421219610, −2.86051475055511532780415747823, −2.04608667435664269152036601236,
1.35303133368798051177019477375, 2.18505487401638818558808968873, 3.19197036492448064429258159371, 4.02189972163525548459817766169, 4.51909018057337448954025778859, 6.82129951109202634947175070113, 7.33595376715233201689207732836, 7.76266478507750659527887788185, 8.848061322639479548719207053368, 9.356225275580860291842039675653