L(s) = 1 | + (−0.415 + 0.909i)2-s + (1.89 + 0.557i)3-s + (−0.654 − 0.755i)4-s + (−1.29 + 1.49i)6-s + (−0.215 + 1.49i)7-s + (0.959 − 0.281i)8-s + (2.45 + 1.57i)9-s + (−0.234 − 0.512i)11-s + (−0.822 − 1.80i)12-s + (−0.186 − 1.29i)13-s + (−1.27 − 0.817i)14-s + (−0.142 + 0.989i)16-s + (−0.654 + 0.755i)17-s + (−2.45 + 1.57i)18-s + (−1.24 + 2.72i)21-s + 0.563·22-s + ⋯ |
L(s) = 1 | + (−0.415 + 0.909i)2-s + (1.89 + 0.557i)3-s + (−0.654 − 0.755i)4-s + (−1.29 + 1.49i)6-s + (−0.215 + 1.49i)7-s + (0.959 − 0.281i)8-s + (2.45 + 1.57i)9-s + (−0.234 − 0.512i)11-s + (−0.822 − 1.80i)12-s + (−0.186 − 1.29i)13-s + (−1.27 − 0.817i)14-s + (−0.142 + 0.989i)16-s + (−0.654 + 0.755i)17-s + (−2.45 + 1.57i)18-s + (−1.24 + 2.72i)21-s + 0.563·22-s + ⋯ |
Λ(s)=(=(1564s/2ΓC(s)L(s)(−0.305−0.952i)Λ(1−s)
Λ(s)=(=(1564s/2ΓC(s)L(s)(−0.305−0.952i)Λ(1−s)
Degree: |
2 |
Conductor: |
1564
= 22⋅17⋅23
|
Sign: |
−0.305−0.952i
|
Analytic conductor: |
0.780537 |
Root analytic conductor: |
0.883480 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1564(1087,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1564, ( :0), −0.305−0.952i)
|
Particular Values
L(21) |
≈ |
1.560161940 |
L(21) |
≈ |
1.560161940 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.415−0.909i)T |
| 17 | 1+(0.654−0.755i)T |
| 23 | 1+(0.755+0.654i)T |
good | 3 | 1+(−1.89−0.557i)T+(0.841+0.540i)T2 |
| 5 | 1+(−0.415+0.909i)T2 |
| 7 | 1+(0.215−1.49i)T+(−0.959−0.281i)T2 |
| 11 | 1+(0.234+0.512i)T+(−0.654+0.755i)T2 |
| 13 | 1+(0.186+1.29i)T+(−0.959+0.281i)T2 |
| 19 | 1+(0.142−0.989i)T2 |
| 29 | 1+(0.142+0.989i)T2 |
| 31 | 1+(0.540−0.158i)T+(0.841−0.540i)T2 |
| 37 | 1+(−0.415−0.909i)T2 |
| 41 | 1+(−0.415+0.909i)T2 |
| 43 | 1+(−0.841−0.540i)T2 |
| 47 | 1−T2 |
| 53 | 1+(−0.273+1.89i)T+(−0.959−0.281i)T2 |
| 59 | 1+(0.959−0.281i)T2 |
| 61 | 1+(−0.841+0.540i)T2 |
| 67 | 1+(0.654+0.755i)T2 |
| 71 | 1+(−0.654−0.755i)T2 |
| 73 | 1+(0.142−0.989i)T2 |
| 79 | 1+(−0.258−1.80i)T+(−0.959+0.281i)T2 |
| 83 | 1+(−0.415−0.909i)T2 |
| 89 | 1+(1.84+0.540i)T+(0.841+0.540i)T2 |
| 97 | 1+(−0.415+0.909i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.632107505430983542454933572559, −8.624679519049711754216977210165, −8.510502013640778459804720491821, −7.938142060747297639536298179298, −6.83578934292064584682563097815, −5.80197678482934667547505127992, −4.95875537786533063104343341717, −3.91731601232397304558421219610, −2.86051475055511532780415747823, −2.04608667435664269152036601236,
1.35303133368798051177019477375, 2.18505487401638818558808968873, 3.19197036492448064429258159371, 4.02189972163525548459817766169, 4.51909018057337448954025778859, 6.82129951109202634947175070113, 7.33595376715233201689207732836, 7.76266478507750659527887788185, 8.848061322639479548719207053368, 9.356225275580860291842039675653