L(s) = 1 | + (−0.841 − 0.540i)2-s + (−0.215 − 1.49i)3-s + (0.415 + 0.909i)4-s + (−0.627 + 1.37i)6-s + (−1.19 + 1.37i)7-s + (0.142 − 0.989i)8-s + (−1.23 + 0.361i)9-s + (1.66 − 1.07i)11-s + (1.27 − 0.817i)12-s + (0.544 + 0.627i)13-s + (1.74 − 0.512i)14-s + (−0.654 + 0.755i)16-s + (0.415 − 0.909i)17-s + (1.23 + 0.361i)18-s + (2.31 + 1.48i)21-s − 1.97·22-s + ⋯ |
L(s) = 1 | + (−0.841 − 0.540i)2-s + (−0.215 − 1.49i)3-s + (0.415 + 0.909i)4-s + (−0.627 + 1.37i)6-s + (−1.19 + 1.37i)7-s + (0.142 − 0.989i)8-s + (−1.23 + 0.361i)9-s + (1.66 − 1.07i)11-s + (1.27 − 0.817i)12-s + (0.544 + 0.627i)13-s + (1.74 − 0.512i)14-s + (−0.654 + 0.755i)16-s + (0.415 − 0.909i)17-s + (1.23 + 0.361i)18-s + (2.31 + 1.48i)21-s − 1.97·22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1564 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.506 + 0.862i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1564 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.506 + 0.862i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6480785990\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6480785990\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.841 + 0.540i)T \) |
| 17 | \( 1 + (-0.415 + 0.909i)T \) |
| 23 | \( 1 + (0.909 + 0.415i)T \) |
good | 3 | \( 1 + (0.215 + 1.49i)T + (-0.959 + 0.281i)T^{2} \) |
| 5 | \( 1 + (-0.841 - 0.540i)T^{2} \) |
| 7 | \( 1 + (1.19 - 1.37i)T + (-0.142 - 0.989i)T^{2} \) |
| 11 | \( 1 + (-1.66 + 1.07i)T + (0.415 - 0.909i)T^{2} \) |
| 13 | \( 1 + (-0.544 - 0.627i)T + (-0.142 + 0.989i)T^{2} \) |
| 19 | \( 1 + (0.654 - 0.755i)T^{2} \) |
| 29 | \( 1 + (0.654 + 0.755i)T^{2} \) |
| 31 | \( 1 + (-0.281 + 1.95i)T + (-0.959 - 0.281i)T^{2} \) |
| 37 | \( 1 + (-0.841 + 0.540i)T^{2} \) |
| 41 | \( 1 + (-0.841 - 0.540i)T^{2} \) |
| 43 | \( 1 + (0.959 - 0.281i)T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + (-0.186 + 0.215i)T + (-0.142 - 0.989i)T^{2} \) |
| 59 | \( 1 + (0.142 - 0.989i)T^{2} \) |
| 61 | \( 1 + (0.959 + 0.281i)T^{2} \) |
| 67 | \( 1 + (-0.415 - 0.909i)T^{2} \) |
| 71 | \( 1 + (0.415 + 0.909i)T^{2} \) |
| 73 | \( 1 + (0.654 - 0.755i)T^{2} \) |
| 79 | \( 1 + (-0.708 - 0.817i)T + (-0.142 + 0.989i)T^{2} \) |
| 83 | \( 1 + (-0.841 + 0.540i)T^{2} \) |
| 89 | \( 1 + (0.0405 + 0.281i)T + (-0.959 + 0.281i)T^{2} \) |
| 97 | \( 1 + (-0.841 - 0.540i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.155526113559021407760338394565, −8.756016480795766919658224412826, −7.88047609435318572894849094514, −6.83452443400791779712701849632, −6.37111013148516578087959902872, −5.83801758270600481287992766638, −3.84907297789691696418518890764, −2.90553725311221697580194985260, −2.00349132351298894888367770286, −0.815369464374695624342045676143,
1.28450008842816667470635746831, 3.36838247486822046668333345925, 4.01304793640710428903719887239, 4.85476692785787519241514603088, 6.08632490282344653059632930413, 6.63055157221807214972393184624, 7.43022141049763583534130237046, 8.582347724750626085731206178066, 9.289259996944840760571756886114, 9.960956836705006109831518267614