L(s) = 1 | + (−0.654 + 0.755i)2-s + (−1.61 + 1.03i)3-s + (−0.142 − 0.989i)4-s + (0.273 − 1.89i)6-s + (0.273 − 0.0801i)7-s + (0.841 + 0.540i)8-s + (1.11 − 2.44i)9-s + (−1.10 − 1.27i)11-s + (1.25 + 1.45i)12-s + (0.273 + 0.0801i)13-s + (−0.118 + 0.258i)14-s + (−0.959 + 0.281i)16-s + (−0.142 + 0.989i)17-s + (1.11 + 2.44i)18-s + (−0.357 + 0.412i)21-s + 1.68·22-s + ⋯ |
L(s) = 1 | + (−0.654 + 0.755i)2-s + (−1.61 + 1.03i)3-s + (−0.142 − 0.989i)4-s + (0.273 − 1.89i)6-s + (0.273 − 0.0801i)7-s + (0.841 + 0.540i)8-s + (1.11 − 2.44i)9-s + (−1.10 − 1.27i)11-s + (1.25 + 1.45i)12-s + (0.273 + 0.0801i)13-s + (−0.118 + 0.258i)14-s + (−0.959 + 0.281i)16-s + (−0.142 + 0.989i)17-s + (1.11 + 2.44i)18-s + (−0.357 + 0.412i)21-s + 1.68·22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1564 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.988 - 0.153i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1564 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.988 - 0.153i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2852529280\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2852529280\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.654 - 0.755i)T \) |
| 17 | \( 1 + (0.142 - 0.989i)T \) |
| 23 | \( 1 + (0.142 - 0.989i)T \) |
good | 3 | \( 1 + (1.61 - 1.03i)T + (0.415 - 0.909i)T^{2} \) |
| 5 | \( 1 + (0.654 - 0.755i)T^{2} \) |
| 7 | \( 1 + (-0.273 + 0.0801i)T + (0.841 - 0.540i)T^{2} \) |
| 11 | \( 1 + (1.10 + 1.27i)T + (-0.142 + 0.989i)T^{2} \) |
| 13 | \( 1 + (-0.273 - 0.0801i)T + (0.841 + 0.540i)T^{2} \) |
| 19 | \( 1 + (0.959 - 0.281i)T^{2} \) |
| 29 | \( 1 + (0.959 + 0.281i)T^{2} \) |
| 31 | \( 1 + (-1.41 - 0.909i)T + (0.415 + 0.909i)T^{2} \) |
| 37 | \( 1 + (0.654 + 0.755i)T^{2} \) |
| 41 | \( 1 + (0.654 - 0.755i)T^{2} \) |
| 43 | \( 1 + (-0.415 + 0.909i)T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + (1.61 - 0.474i)T + (0.841 - 0.540i)T^{2} \) |
| 59 | \( 1 + (-0.841 - 0.540i)T^{2} \) |
| 61 | \( 1 + (-0.415 - 0.909i)T^{2} \) |
| 67 | \( 1 + (0.142 + 0.989i)T^{2} \) |
| 71 | \( 1 + (1.30 - 1.51i)T + (-0.142 - 0.989i)T^{2} \) |
| 73 | \( 1 + (0.959 - 0.281i)T^{2} \) |
| 79 | \( 1 + (-1.25 - 0.368i)T + (0.841 + 0.540i)T^{2} \) |
| 83 | \( 1 + (0.654 + 0.755i)T^{2} \) |
| 89 | \( 1 + (-1.41 + 0.909i)T + (0.415 - 0.909i)T^{2} \) |
| 97 | \( 1 + (0.654 - 0.755i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.11704647742389681271747741313, −9.332758470824117069569497072200, −8.440367125762274710314108735486, −7.62995780683371352389283441435, −6.44961365035030134812025315130, −5.94032718528012477294636099521, −5.31056542548161227544396789686, −4.58144492030959011245665797689, −3.46421990344886334718301617217, −1.22645797292648512642937965728,
0.38917297766133889846721287478, 1.81680292317503947328616934802, 2.57263859370714147047767560083, 4.55033696774225110187159753679, 4.91985378909898504846441457494, 6.18182662831400110533501801254, 6.90821471190708056366165339627, 7.77299386841021567417300623185, 8.100064847728385727579103663417, 9.579042018878561679922741392093