L(s) = 1 | + (0.654 + 0.755i)2-s + (−0.474 − 0.304i)3-s + (−0.142 + 0.989i)4-s + (−0.0801 − 0.557i)6-s + (−1.89 − 0.557i)7-s + (−0.841 + 0.540i)8-s + (−0.283 − 0.620i)9-s + (0.708 − 0.817i)11-s + (0.368 − 0.425i)12-s + (−0.273 + 0.0801i)13-s + (−0.822 − 1.80i)14-s + (−0.959 − 0.281i)16-s + (−0.142 − 0.989i)17-s + (0.283 − 0.620i)18-s + (0.730 + 0.843i)21-s + 1.08·22-s + ⋯ |
L(s) = 1 | + (0.654 + 0.755i)2-s + (−0.474 − 0.304i)3-s + (−0.142 + 0.989i)4-s + (−0.0801 − 0.557i)6-s + (−1.89 − 0.557i)7-s + (−0.841 + 0.540i)8-s + (−0.283 − 0.620i)9-s + (0.708 − 0.817i)11-s + (0.368 − 0.425i)12-s + (−0.273 + 0.0801i)13-s + (−0.822 − 1.80i)14-s + (−0.959 − 0.281i)16-s + (−0.142 − 0.989i)17-s + (0.283 − 0.620i)18-s + (0.730 + 0.843i)21-s + 1.08·22-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1564 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.153 + 0.988i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1564 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.153 + 0.988i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5484797046\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5484797046\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.654 - 0.755i)T \) |
| 17 | \( 1 + (0.142 + 0.989i)T \) |
| 23 | \( 1 + (0.989 - 0.142i)T \) |
good | 3 | \( 1 + (0.474 + 0.304i)T + (0.415 + 0.909i)T^{2} \) |
| 5 | \( 1 + (0.654 + 0.755i)T^{2} \) |
| 7 | \( 1 + (1.89 + 0.557i)T + (0.841 + 0.540i)T^{2} \) |
| 11 | \( 1 + (-0.708 + 0.817i)T + (-0.142 - 0.989i)T^{2} \) |
| 13 | \( 1 + (0.273 - 0.0801i)T + (0.841 - 0.540i)T^{2} \) |
| 19 | \( 1 + (0.959 + 0.281i)T^{2} \) |
| 29 | \( 1 + (0.959 - 0.281i)T^{2} \) |
| 31 | \( 1 + (-0.909 + 0.584i)T + (0.415 - 0.909i)T^{2} \) |
| 37 | \( 1 + (0.654 - 0.755i)T^{2} \) |
| 41 | \( 1 + (0.654 + 0.755i)T^{2} \) |
| 43 | \( 1 + (-0.415 - 0.909i)T^{2} \) |
| 47 | \( 1 - T^{2} \) |
| 53 | \( 1 + (1.61 + 0.474i)T + (0.841 + 0.540i)T^{2} \) |
| 59 | \( 1 + (-0.841 + 0.540i)T^{2} \) |
| 61 | \( 1 + (-0.415 + 0.909i)T^{2} \) |
| 67 | \( 1 + (0.142 - 0.989i)T^{2} \) |
| 71 | \( 1 + (-0.142 + 0.989i)T^{2} \) |
| 73 | \( 1 + (0.959 + 0.281i)T^{2} \) |
| 79 | \( 1 + (1.45 - 0.425i)T + (0.841 - 0.540i)T^{2} \) |
| 83 | \( 1 + (0.654 - 0.755i)T^{2} \) |
| 89 | \( 1 + (1.41 + 0.909i)T + (0.415 + 0.909i)T^{2} \) |
| 97 | \( 1 + (0.654 + 0.755i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.450834292837391369187200319015, −8.596275367147760583486622148731, −7.50923505281954307300724734229, −6.71676682061838875517811226176, −6.25483867840650061503524608967, −5.75351752201187914928747902376, −4.35441509277942598923315854175, −3.55376131097801495017142961731, −2.82993950472443707554695996578, −0.34654367221916445136474197420,
1.91875360758388003423841201394, 2.94575696625148721688152904385, 3.85532830222358134128339201985, 4.69059644151428260391002873013, 5.83100214070108160747073729670, 6.16365248549437448541632104866, 7.07097414926485500741685772897, 8.472308806775114472376014136549, 9.470218570573009045820106360634, 9.895342680300980822562023099889