L(s) = 1 | + (0.707 − 1.22i)3-s + (−0.499 − 0.866i)9-s + (0.707 − 1.22i)17-s + (−0.707 − 1.22i)19-s + (−0.5 + 0.866i)25-s + 1.41·41-s + (−0.999 − 1.73i)51-s − 2·57-s + (−0.707 + 1.22i)59-s + (−1 + 1.73i)67-s + (−0.707 + 1.22i)73-s + (0.707 + 1.22i)75-s + (0.499 − 0.866i)81-s + 1.41·83-s + (−0.707 − 1.22i)89-s + ⋯ |
L(s) = 1 | + (0.707 − 1.22i)3-s + (−0.499 − 0.866i)9-s + (0.707 − 1.22i)17-s + (−0.707 − 1.22i)19-s + (−0.5 + 0.866i)25-s + 1.41·41-s + (−0.999 − 1.73i)51-s − 2·57-s + (−0.707 + 1.22i)59-s + (−1 + 1.73i)67-s + (−0.707 + 1.22i)73-s + (0.707 + 1.22i)75-s + (0.499 − 0.866i)81-s + 1.41·83-s + (−0.707 − 1.22i)89-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1568 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0725 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1568 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0725 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.380486867\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.380486867\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 \) |
good | 3 | \( 1 + (-0.707 + 1.22i)T + (-0.5 - 0.866i)T^{2} \) |
| 5 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 + (-0.707 + 1.22i)T + (-0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (0.707 + 1.22i)T + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 - 1.41T + T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (0.707 - 1.22i)T + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (0.707 - 1.22i)T + (-0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 - 1.41T + T^{2} \) |
| 89 | \( 1 + (0.707 + 1.22i)T + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + 1.41T + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.157798156523808286650892453451, −8.660605504012648309813309161355, −7.53992890417129484905562244267, −7.35063504193994252362671774154, −6.41080785281774541841876592879, −5.43722138909765229489834439863, −4.35125661697436964307967823993, −3.04325926379415350775855125820, −2.36511757652262827163282753088, −1.10601424514485362009228973435,
1.86858885853818821176704884330, 3.13352330154070857860618869330, 3.92114328232216986708507225215, 4.52900856175681329269914188302, 5.70244875009684826986498802205, 6.40499314013044653506388457593, 7.84689217463132995145925867823, 8.226287700604041596649903023215, 9.138573588130012159187472863741, 9.799173086239167911316777520391