Properties

Label 2-1575-1.1-c1-0-41
Degree $2$
Conductor $1575$
Sign $-1$
Analytic cond. $12.5764$
Root an. cond. $3.54632$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 4-s − 7-s − 3·8-s + 6·11-s − 2·13-s − 14-s − 16-s − 4·17-s − 6·19-s + 6·22-s − 2·26-s + 28-s + 2·29-s − 10·31-s + 5·32-s − 4·34-s − 4·37-s − 6·38-s − 2·41-s − 4·43-s − 6·44-s + 49-s + 2·52-s − 6·53-s + 3·56-s + 2·58-s + ⋯
L(s)  = 1  + 0.707·2-s − 1/2·4-s − 0.377·7-s − 1.06·8-s + 1.80·11-s − 0.554·13-s − 0.267·14-s − 1/4·16-s − 0.970·17-s − 1.37·19-s + 1.27·22-s − 0.392·26-s + 0.188·28-s + 0.371·29-s − 1.79·31-s + 0.883·32-s − 0.685·34-s − 0.657·37-s − 0.973·38-s − 0.312·41-s − 0.609·43-s − 0.904·44-s + 1/7·49-s + 0.277·52-s − 0.824·53-s + 0.400·56-s + 0.262·58-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1575 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1575\)    =    \(3^{2} \cdot 5^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(12.5764\)
Root analytic conductor: \(3.54632\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1575,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
7 \( 1 + T \)
good2 \( 1 - T + p T^{2} \)
11 \( 1 - 6 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 + 4 T + p T^{2} \)
19 \( 1 + 6 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 + 10 T + p T^{2} \)
37 \( 1 + 4 T + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 - 8 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 + 16 T + p T^{2} \)
71 \( 1 + 10 T + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 + 8 T + p T^{2} \)
89 \( 1 + 6 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.971552311057573237641723762458, −8.564726035632039332608333026566, −7.11999628519012507821966096100, −6.49227489268027016194575261734, −5.75408159665580195145733679557, −4.60578903619236206845761227834, −4.08242632050905699099504942411, −3.20269986936965107647955994590, −1.82947662480420584992219247222, 0, 1.82947662480420584992219247222, 3.20269986936965107647955994590, 4.08242632050905699099504942411, 4.60578903619236206845761227834, 5.75408159665580195145733679557, 6.49227489268027016194575261734, 7.11999628519012507821966096100, 8.564726035632039332608333026566, 8.971552311057573237641723762458

Graph of the $Z$-function along the critical line