L(s) = 1 | + (−0.173 + 0.984i)2-s + (−0.766 − 0.642i)3-s + (−0.939 − 0.342i)4-s + (−1.43 + 0.524i)5-s + (0.766 − 0.642i)6-s + (0.5 + 0.866i)7-s + (0.5 − 0.866i)8-s + (0.173 + 0.984i)9-s + (−0.266 − 1.50i)10-s + (0.173 − 0.300i)11-s + (0.499 + 0.866i)12-s + (−0.939 + 0.342i)14-s + (1.43 + 0.524i)15-s + (0.766 + 0.642i)16-s + (−0.326 + 1.85i)17-s − 18-s + ⋯ |
L(s) = 1 | + (−0.173 + 0.984i)2-s + (−0.766 − 0.642i)3-s + (−0.939 − 0.342i)4-s + (−1.43 + 0.524i)5-s + (0.766 − 0.642i)6-s + (0.5 + 0.866i)7-s + (0.5 − 0.866i)8-s + (0.173 + 0.984i)9-s + (−0.266 − 1.50i)10-s + (0.173 − 0.300i)11-s + (0.499 + 0.866i)12-s + (−0.939 + 0.342i)14-s + (1.43 + 0.524i)15-s + (0.766 + 0.642i)16-s + (−0.326 + 1.85i)17-s − 18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1596 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.513 + 0.858i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1596 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.513 + 0.858i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.05256434447\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.05256434447\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.173 - 0.984i)T \) |
| 3 | \( 1 + (0.766 + 0.642i)T \) |
| 7 | \( 1 + (-0.5 - 0.866i)T \) |
| 19 | \( 1 + (0.173 + 0.984i)T \) |
good | 5 | \( 1 + (1.43 - 0.524i)T + (0.766 - 0.642i)T^{2} \) |
| 11 | \( 1 + (-0.173 + 0.300i)T + (-0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 17 | \( 1 + (0.326 - 1.85i)T + (-0.939 - 0.342i)T^{2} \) |
| 23 | \( 1 + (0.939 + 0.342i)T + (0.766 + 0.642i)T^{2} \) |
| 29 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 31 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + 1.87T + T^{2} \) |
| 41 | \( 1 + (1.43 + 1.20i)T + (0.173 + 0.984i)T^{2} \) |
| 43 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 47 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 53 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 59 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 61 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 67 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 71 | \( 1 + (0.939 - 0.342i)T + (0.766 - 0.642i)T^{2} \) |
| 73 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 79 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 83 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + (-1.17 + 0.984i)T + (0.173 - 0.984i)T^{2} \) |
| 97 | \( 1 + (0.939 + 0.342i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.32022389599790136420280832115, −8.773431973775991045648446784726, −8.398557899887585175419486514911, −7.67947634432716005779566158573, −6.93565487674500504091367410310, −6.23892351543541037180721008959, −5.46416866065203337396913348845, −4.49691067266903126891791495420, −3.65094745421155846495329350254, −1.89383736951225534150128550728,
0.05202601799244217133396259807, 1.42176196092258843534915476616, 3.36999891857376333387808145704, 3.94260904501466299474705932569, 4.73936922071496572740076030852, 5.19593962246463851285593950221, 6.86635428764257824137643178099, 7.64400306061263336795372501863, 8.415181829659165421918642781708, 9.245597442456064207946133161033