L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.5 − 0.866i)3-s + (−0.499 + 0.866i)4-s + (−0.5 − 0.866i)5-s + (0.499 − 0.866i)6-s + 7-s − 0.999·8-s + (−0.499 + 0.866i)9-s + (0.499 − 0.866i)10-s + 11-s + 0.999·12-s + (0.5 + 0.866i)14-s + (−0.499 + 0.866i)15-s + (−0.5 − 0.866i)16-s + (−0.5 − 0.866i)17-s − 0.999·18-s + ⋯ |
L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.5 − 0.866i)3-s + (−0.499 + 0.866i)4-s + (−0.5 − 0.866i)5-s + (0.499 − 0.866i)6-s + 7-s − 0.999·8-s + (−0.499 + 0.866i)9-s + (0.499 − 0.866i)10-s + 11-s + 0.999·12-s + (0.5 + 0.866i)14-s + (−0.499 + 0.866i)15-s + (−0.5 − 0.866i)16-s + (−0.5 − 0.866i)17-s − 0.999·18-s + ⋯ |
Λ(s)=(=(1596s/2ΓC(s)L(s)(0.977+0.211i)Λ(1−s)
Λ(s)=(=(1596s/2ΓC(s)L(s)(0.977+0.211i)Λ(1−s)
Degree: |
2 |
Conductor: |
1596
= 22⋅3⋅7⋅19
|
Sign: |
0.977+0.211i
|
Analytic conductor: |
0.796507 |
Root analytic conductor: |
0.892472 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1596(83,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1596, ( :0), 0.977+0.211i)
|
Particular Values
L(21) |
≈ |
1.156705845 |
L(21) |
≈ |
1.156705845 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.5−0.866i)T |
| 3 | 1+(0.5+0.866i)T |
| 7 | 1−T |
| 19 | 1+(0.5−0.866i)T |
good | 5 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 11 | 1−T+T2 |
| 13 | 1+(0.5+0.866i)T2 |
| 17 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 23 | 1+(−1+1.73i)T+(−0.5−0.866i)T2 |
| 29 | 1+(0.5+0.866i)T2 |
| 31 | 1−2T+T2 |
| 37 | 1+T+T2 |
| 41 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 43 | 1+(0.5−0.866i)T2 |
| 47 | 1+(0.5+0.866i)T2 |
| 53 | 1+(0.5+0.866i)T2 |
| 59 | 1+(0.5−0.866i)T2 |
| 61 | 1+(0.5+0.866i)T2 |
| 67 | 1+(0.5+0.866i)T2 |
| 71 | 1+(−1−1.73i)T+(−0.5+0.866i)T2 |
| 73 | 1+(0.5−0.866i)T2 |
| 79 | 1+(0.5−0.866i)T2 |
| 83 | 1−T2 |
| 89 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 97 | 1+(0.5−0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.060283980223719389266635941910, −8.383838797923700874884287492424, −8.103225046207645987830121605288, −6.91170414691845306254359946523, −6.58000993713222950167333036663, −5.40792953057127450588370751030, −4.74280336816020163240315817064, −4.13596127480650960361179811252, −2.50997736454167739372411746163, −0.972733321512063517460296557456,
1.44260092666158496693050292945, 2.92932280342745345758789338625, 3.74399984198466322174026167947, 4.50047523684362175703236578705, 5.19377351736445941863355114817, 6.27053216134840864865462649175, 6.94300837519052736787524490748, 8.329647868614934950875684090772, 9.067886951137611438718453957655, 9.841925487486072338712976126604