L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.5 − 0.866i)3-s + (−0.499 + 0.866i)4-s + (−0.5 − 0.866i)5-s + (0.499 − 0.866i)6-s + 7-s − 0.999·8-s + (−0.499 + 0.866i)9-s + (0.499 − 0.866i)10-s + 11-s + 0.999·12-s + (0.5 + 0.866i)14-s + (−0.499 + 0.866i)15-s + (−0.5 − 0.866i)16-s + (−0.5 − 0.866i)17-s − 0.999·18-s + ⋯ |
L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.5 − 0.866i)3-s + (−0.499 + 0.866i)4-s + (−0.5 − 0.866i)5-s + (0.499 − 0.866i)6-s + 7-s − 0.999·8-s + (−0.499 + 0.866i)9-s + (0.499 − 0.866i)10-s + 11-s + 0.999·12-s + (0.5 + 0.866i)14-s + (−0.499 + 0.866i)15-s + (−0.5 − 0.866i)16-s + (−0.5 − 0.866i)17-s − 0.999·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1596 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.977 + 0.211i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1596 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.977 + 0.211i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.156705845\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.156705845\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 3 | \( 1 + (0.5 + 0.866i)T \) |
| 7 | \( 1 - T \) |
| 19 | \( 1 + (0.5 - 0.866i)T \) |
good | 5 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 - T + T^{2} \) |
| 13 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (-1 + 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 - 2T + T^{2} \) |
| 37 | \( 1 + T + T^{2} \) |
| 41 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (-1 - 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 73 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.060283980223719389266635941910, −8.383838797923700874884287492424, −8.103225046207645987830121605288, −6.91170414691845306254359946523, −6.58000993713222950167333036663, −5.40792953057127450588370751030, −4.74280336816020163240315817064, −4.13596127480650960361179811252, −2.50997736454167739372411746163, −0.972733321512063517460296557456,
1.44260092666158496693050292945, 2.92932280342745345758789338625, 3.74399984198466322174026167947, 4.50047523684362175703236578705, 5.19377351736445941863355114817, 6.27053216134840864865462649175, 6.94300837519052736787524490748, 8.329647868614934950875684090772, 9.067886951137611438718453957655, 9.841925487486072338712976126604