L(s) = 1 | + (0.766 − 0.642i)3-s + (−0.939 + 0.342i)7-s + (0.173 − 0.984i)9-s + (1.76 − 0.642i)13-s + (−0.5 − 0.866i)19-s + (−0.5 + 0.866i)21-s + (0.173 − 0.984i)25-s + (−0.500 − 0.866i)27-s + (0.939 + 1.62i)31-s + (−0.173 − 0.300i)37-s + (0.939 − 1.62i)39-s + (0.0603 + 0.342i)43-s + (0.766 − 0.642i)49-s + (−0.939 − 0.342i)57-s + (−0.326 + 0.118i)61-s + ⋯ |
L(s) = 1 | + (0.766 − 0.642i)3-s + (−0.939 + 0.342i)7-s + (0.173 − 0.984i)9-s + (1.76 − 0.642i)13-s + (−0.5 − 0.866i)19-s + (−0.5 + 0.866i)21-s + (0.173 − 0.984i)25-s + (−0.500 − 0.866i)27-s + (0.939 + 1.62i)31-s + (−0.173 − 0.300i)37-s + (0.939 − 1.62i)39-s + (0.0603 + 0.342i)43-s + (0.766 − 0.642i)49-s + (−0.939 − 0.342i)57-s + (−0.326 + 0.118i)61-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1596 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.580 + 0.814i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1596 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.580 + 0.814i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.371336220\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.371336220\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.766 + 0.642i)T \) |
| 7 | \( 1 + (0.939 - 0.342i)T \) |
| 19 | \( 1 + (0.5 + 0.866i)T \) |
good | 5 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 + (-1.76 + 0.642i)T + (0.766 - 0.642i)T^{2} \) |
| 17 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 23 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 29 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 31 | \( 1 + (-0.939 - 1.62i)T + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (0.173 + 0.300i)T + (-0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 43 | \( 1 + (-0.0603 - 0.342i)T + (-0.939 + 0.342i)T^{2} \) |
| 47 | \( 1 + (0.939 + 0.342i)T^{2} \) |
| 53 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 59 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 61 | \( 1 + (0.326 - 0.118i)T + (0.766 - 0.642i)T^{2} \) |
| 67 | \( 1 + (0.326 - 0.118i)T + (0.766 - 0.642i)T^{2} \) |
| 71 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 73 | \( 1 + (1.43 - 1.20i)T + (0.173 - 0.984i)T^{2} \) |
| 79 | \( 1 + (-0.266 - 1.50i)T + (-0.939 + 0.342i)T^{2} \) |
| 83 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 89 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 97 | \( 1 + (0.766 - 0.642i)T + (0.173 - 0.984i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.247324668212553743743617671852, −8.596257836783332825803158150281, −8.157895194682684265717833580212, −6.89473212983980318632633558329, −6.47289263817039806272380411393, −5.63657190610613069031064021000, −4.21235357249640903587294318871, −3.26704066021766623011223218785, −2.59421164751314955964943914624, −1.12815082198037714674626673625,
1.66063264088765336808306138335, 3.01887537152401655848876773840, 3.78418982636600759427768294568, 4.38462894984632236837996977129, 5.77113364906848445468082126002, 6.42211683303129298430152562953, 7.45923732720615871418503545453, 8.304799572345683847647319480691, 8.997982603102878012931364259112, 9.625494326450565437900863962339