L(s) = 1 | + (0.707 − 0.707i)2-s + 0.999i·4-s + (2 + 2i)7-s + (2.12 + 2.12i)8-s − 2.82i·11-s + (−1 + i)13-s + 2.82·14-s + 1.00·16-s + (2.82 − 2.82i)17-s + (−2.00 − 2.00i)22-s + (−2.82 − 2.82i)23-s + 1.41i·26-s + (−1.99 + 1.99i)28-s − 4.24·29-s − 4·31-s + (−3.53 + 3.53i)32-s + ⋯ |
L(s) = 1 | + (0.499 − 0.499i)2-s + 0.499i·4-s + (0.755 + 0.755i)7-s + (0.750 + 0.750i)8-s − 0.852i·11-s + (−0.277 + 0.277i)13-s + 0.755·14-s + 0.250·16-s + (0.685 − 0.685i)17-s + (−0.426 − 0.426i)22-s + (−0.589 − 0.589i)23-s + 0.277i·26-s + (−0.377 + 0.377i)28-s − 0.787·29-s − 0.718·31-s + (−0.624 + 0.624i)32-s + ⋯ |
Λ(s)=(=(225s/2ΓC(s)L(s)(0.998−0.0618i)Λ(2−s)
Λ(s)=(=(225s/2ΓC(s+1/2)L(s)(0.998−0.0618i)Λ(1−s)
Degree: |
2 |
Conductor: |
225
= 32⋅52
|
Sign: |
0.998−0.0618i
|
Analytic conductor: |
1.79663 |
Root analytic conductor: |
1.34038 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ225(107,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 225, ( :1/2), 0.998−0.0618i)
|
Particular Values
L(1) |
≈ |
1.66462+0.0515409i |
L(21) |
≈ |
1.66462+0.0515409i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
good | 2 | 1+(−0.707+0.707i)T−2iT2 |
| 7 | 1+(−2−2i)T+7iT2 |
| 11 | 1+2.82iT−11T2 |
| 13 | 1+(1−i)T−13iT2 |
| 17 | 1+(−2.82+2.82i)T−17iT2 |
| 19 | 1−19T2 |
| 23 | 1+(2.82+2.82i)T+23iT2 |
| 29 | 1+4.24T+29T2 |
| 31 | 1+4T+31T2 |
| 37 | 1+(1+i)T+37iT2 |
| 41 | 1−1.41iT−41T2 |
| 43 | 1+(−8+8i)T−43iT2 |
| 47 | 1+(5.65−5.65i)T−47iT2 |
| 53 | 1+(2.82+2.82i)T+53iT2 |
| 59 | 1+8.48T+59T2 |
| 61 | 1−8T+61T2 |
| 67 | 1+(4+4i)T+67iT2 |
| 71 | 1−5.65iT−71T2 |
| 73 | 1+(1−i)T−73iT2 |
| 79 | 1+12iT−79T2 |
| 83 | 1+(2.82+2.82i)T+83iT2 |
| 89 | 1−12.7T+89T2 |
| 97 | 1+(−11−11i)T+97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.12361151186186338459818859337, −11.53934067007424217991385147819, −10.69460255020947430415038567067, −9.226469386394698919591401633144, −8.299540793805372021990532734293, −7.41439774919426906661234688227, −5.77736108683814380360010462353, −4.76327402091490315405806228426, −3.43575388767802316861762507108, −2.15141207381034754334356551336,
1.60237081858699516247308595620, 3.92599680435465843769319585591, 4.92528642053359984071928104512, 5.94259361664127967526430284693, 7.22408914352540503292374627314, 7.87402606288572129739644673693, 9.509366422982229982987214642022, 10.32011556253008692366435768901, 11.16369469681601332877654522516, 12.44350411956089834311056661805