L(s) = 1 | + (0.707 − 0.707i)2-s + 0.999i·4-s + (2 + 2i)7-s + (2.12 + 2.12i)8-s − 2.82i·11-s + (−1 + i)13-s + 2.82·14-s + 1.00·16-s + (2.82 − 2.82i)17-s + (−2.00 − 2.00i)22-s + (−2.82 − 2.82i)23-s + 1.41i·26-s + (−1.99 + 1.99i)28-s − 4.24·29-s − 4·31-s + (−3.53 + 3.53i)32-s + ⋯ |
L(s) = 1 | + (0.499 − 0.499i)2-s + 0.499i·4-s + (0.755 + 0.755i)7-s + (0.750 + 0.750i)8-s − 0.852i·11-s + (−0.277 + 0.277i)13-s + 0.755·14-s + 0.250·16-s + (0.685 − 0.685i)17-s + (−0.426 − 0.426i)22-s + (−0.589 − 0.589i)23-s + 0.277i·26-s + (−0.377 + 0.377i)28-s − 0.787·29-s − 0.718·31-s + (−0.624 + 0.624i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.998 - 0.0618i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.998 - 0.0618i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.66462 + 0.0515409i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.66462 + 0.0515409i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (-0.707 + 0.707i)T - 2iT^{2} \) |
| 7 | \( 1 + (-2 - 2i)T + 7iT^{2} \) |
| 11 | \( 1 + 2.82iT - 11T^{2} \) |
| 13 | \( 1 + (1 - i)T - 13iT^{2} \) |
| 17 | \( 1 + (-2.82 + 2.82i)T - 17iT^{2} \) |
| 19 | \( 1 - 19T^{2} \) |
| 23 | \( 1 + (2.82 + 2.82i)T + 23iT^{2} \) |
| 29 | \( 1 + 4.24T + 29T^{2} \) |
| 31 | \( 1 + 4T + 31T^{2} \) |
| 37 | \( 1 + (1 + i)T + 37iT^{2} \) |
| 41 | \( 1 - 1.41iT - 41T^{2} \) |
| 43 | \( 1 + (-8 + 8i)T - 43iT^{2} \) |
| 47 | \( 1 + (5.65 - 5.65i)T - 47iT^{2} \) |
| 53 | \( 1 + (2.82 + 2.82i)T + 53iT^{2} \) |
| 59 | \( 1 + 8.48T + 59T^{2} \) |
| 61 | \( 1 - 8T + 61T^{2} \) |
| 67 | \( 1 + (4 + 4i)T + 67iT^{2} \) |
| 71 | \( 1 - 5.65iT - 71T^{2} \) |
| 73 | \( 1 + (1 - i)T - 73iT^{2} \) |
| 79 | \( 1 + 12iT - 79T^{2} \) |
| 83 | \( 1 + (2.82 + 2.82i)T + 83iT^{2} \) |
| 89 | \( 1 - 12.7T + 89T^{2} \) |
| 97 | \( 1 + (-11 - 11i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.12361151186186338459818859337, −11.53934067007424217991385147819, −10.69460255020947430415038567067, −9.226469386394698919591401633144, −8.299540793805372021990532734293, −7.41439774919426906661234688227, −5.77736108683814380360010462353, −4.76327402091490315405806228426, −3.43575388767802316861762507108, −2.15141207381034754334356551336,
1.60237081858699516247308595620, 3.92599680435465843769319585591, 4.92528642053359984071928104512, 5.94259361664127967526430284693, 7.22408914352540503292374627314, 7.87402606288572129739644673693, 9.509366422982229982987214642022, 10.32011556253008692366435768901, 11.16369469681601332877654522516, 12.44350411956089834311056661805