L(s) = 1 | + (−1.73 + 1.73i)2-s − 3.99i·4-s + (−1.22 − 1.22i)7-s + (3.46 + 3.46i)8-s − 4.24i·11-s + (3.67 − 3.67i)13-s + 4.24·14-s − 3.99·16-s + (1.73 − 1.73i)17-s + 5i·19-s + (7.34 + 7.34i)22-s + (−1.73 − 1.73i)23-s + 12.7i·26-s + (−4.89 + 4.89i)28-s + 4.24·29-s + ⋯ |
L(s) = 1 | + (−1.22 + 1.22i)2-s − 1.99i·4-s + (−0.462 − 0.462i)7-s + (1.22 + 1.22i)8-s − 1.27i·11-s + (1.01 − 1.01i)13-s + 1.13·14-s − 0.999·16-s + (0.420 − 0.420i)17-s + 1.14i·19-s + (1.56 + 1.56i)22-s + (−0.361 − 0.361i)23-s + 2.49i·26-s + (−0.925 + 0.925i)28-s + 0.787·29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 - 0.0387i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 225 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 - 0.0387i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.588700 + 0.0114144i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.588700 + 0.0114144i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (1.73 - 1.73i)T - 2iT^{2} \) |
| 7 | \( 1 + (1.22 + 1.22i)T + 7iT^{2} \) |
| 11 | \( 1 + 4.24iT - 11T^{2} \) |
| 13 | \( 1 + (-3.67 + 3.67i)T - 13iT^{2} \) |
| 17 | \( 1 + (-1.73 + 1.73i)T - 17iT^{2} \) |
| 19 | \( 1 - 5iT - 19T^{2} \) |
| 23 | \( 1 + (1.73 + 1.73i)T + 23iT^{2} \) |
| 29 | \( 1 - 4.24T + 29T^{2} \) |
| 31 | \( 1 - T + 31T^{2} \) |
| 37 | \( 1 + (2.44 + 2.44i)T + 37iT^{2} \) |
| 41 | \( 1 + 8.48iT - 41T^{2} \) |
| 43 | \( 1 + (-1.22 + 1.22i)T - 43iT^{2} \) |
| 47 | \( 1 + (-5.19 + 5.19i)T - 47iT^{2} \) |
| 53 | \( 1 + (-6.92 - 6.92i)T + 53iT^{2} \) |
| 59 | \( 1 + 12.7T + 59T^{2} \) |
| 61 | \( 1 + 7T + 61T^{2} \) |
| 67 | \( 1 + (3.67 + 3.67i)T + 67iT^{2} \) |
| 71 | \( 1 - 8.48iT - 71T^{2} \) |
| 73 | \( 1 + (2.44 - 2.44i)T - 73iT^{2} \) |
| 79 | \( 1 + 2iT - 79T^{2} \) |
| 83 | \( 1 + (1.73 + 1.73i)T + 83iT^{2} \) |
| 89 | \( 1 - 8.48T + 89T^{2} \) |
| 97 | \( 1 + (-8.57 - 8.57i)T + 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.19158687454920965559033486578, −10.64104472361395875133202875396, −10.28914535945330415065062740759, −8.981069512368920473503000174946, −8.287860466477964578511361575132, −7.42431560186497075392247122170, −6.21244013472233448682779907288, −5.61538356234157567298668388837, −3.51662911228896568943635817463, −0.789909441807858349136943020977,
1.62844835723601809902365422192, 2.96186263021755750703819101722, 4.39915894184286617827701242205, 6.36420580567232837920270535802, 7.58641545234287555253528826062, 8.751838628297997093122650332662, 9.402805178380579625629790557277, 10.21165850034485547602030765611, 11.20313618241031853236235548028, 12.00440012228052309141403199162