Properties

Label 2-15e3-15.14-c0-0-5
Degree $2$
Conductor $3375$
Sign $1$
Analytic cond. $1.68434$
Root an. cond. $1.29782$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.33·2-s + 0.790·4-s − 0.279·8-s − 1.16·16-s + 1.82·17-s + 1.33·19-s − 0.209·23-s + 1.82·31-s − 1.27·32-s + 2.44·34-s + 1.79·38-s − 0.279·46-s + 0.618·47-s + 49-s − 1.95·53-s − 1.95·61-s + 2.44·62-s − 0.547·64-s + 1.44·68-s + 1.05·76-s − 1.95·79-s − 1.95·83-s − 0.165·92-s + 0.827·94-s + 1.33·98-s − 2.61·106-s − 1.61·107-s + ⋯
L(s)  = 1  + 1.33·2-s + 0.790·4-s − 0.279·8-s − 1.16·16-s + 1.82·17-s + 1.33·19-s − 0.209·23-s + 1.82·31-s − 1.27·32-s + 2.44·34-s + 1.79·38-s − 0.279·46-s + 0.618·47-s + 49-s − 1.95·53-s − 1.95·61-s + 2.44·62-s − 0.547·64-s + 1.44·68-s + 1.05·76-s − 1.95·79-s − 1.95·83-s − 0.165·92-s + 0.827·94-s + 1.33·98-s − 2.61·106-s − 1.61·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3375 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3375 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3375\)    =    \(3^{3} \cdot 5^{3}\)
Sign: $1$
Analytic conductor: \(1.68434\)
Root analytic conductor: \(1.29782\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{3375} (3374, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 3375,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(2.538436045\)
\(L(\frac12)\) \(\approx\) \(2.538436045\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 \)
good2 \( 1 - 1.33T + T^{2} \)
7 \( 1 - T^{2} \)
11 \( 1 - T^{2} \)
13 \( 1 - T^{2} \)
17 \( 1 - 1.82T + T^{2} \)
19 \( 1 - 1.33T + T^{2} \)
23 \( 1 + 0.209T + T^{2} \)
29 \( 1 - T^{2} \)
31 \( 1 - 1.82T + T^{2} \)
37 \( 1 - T^{2} \)
41 \( 1 - T^{2} \)
43 \( 1 - T^{2} \)
47 \( 1 - 0.618T + T^{2} \)
53 \( 1 + 1.95T + T^{2} \)
59 \( 1 - T^{2} \)
61 \( 1 + 1.95T + T^{2} \)
67 \( 1 - T^{2} \)
71 \( 1 - T^{2} \)
73 \( 1 - T^{2} \)
79 \( 1 + 1.95T + T^{2} \)
83 \( 1 + 1.95T + T^{2} \)
89 \( 1 - T^{2} \)
97 \( 1 - T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.757559404778757287260412450887, −7.84074538217986916015680000977, −7.23053151582233900614204327311, −6.18778841810694993695568679747, −5.69712574898164366499901375615, −4.96009851236727662115523264904, −4.22696648210132150076729840492, −3.25941969567978494669220389188, −2.81707069808496930006828393459, −1.28555287507302653788962362903, 1.28555287507302653788962362903, 2.81707069808496930006828393459, 3.25941969567978494669220389188, 4.22696648210132150076729840492, 4.96009851236727662115523264904, 5.69712574898164366499901375615, 6.18778841810694993695568679747, 7.23053151582233900614204327311, 7.84074538217986916015680000977, 8.757559404778757287260412450887

Graph of the $Z$-function along the critical line