L(s) = 1 | + 1.33·2-s + 0.790·4-s − 0.279·8-s − 1.16·16-s + 1.82·17-s + 1.33·19-s − 0.209·23-s + 1.82·31-s − 1.27·32-s + 2.44·34-s + 1.79·38-s − 0.279·46-s + 0.618·47-s + 49-s − 1.95·53-s − 1.95·61-s + 2.44·62-s − 0.547·64-s + 1.44·68-s + 1.05·76-s − 1.95·79-s − 1.95·83-s − 0.165·92-s + 0.827·94-s + 1.33·98-s − 2.61·106-s − 1.61·107-s + ⋯ |
L(s) = 1 | + 1.33·2-s + 0.790·4-s − 0.279·8-s − 1.16·16-s + 1.82·17-s + 1.33·19-s − 0.209·23-s + 1.82·31-s − 1.27·32-s + 2.44·34-s + 1.79·38-s − 0.279·46-s + 0.618·47-s + 49-s − 1.95·53-s − 1.95·61-s + 2.44·62-s − 0.547·64-s + 1.44·68-s + 1.05·76-s − 1.95·79-s − 1.95·83-s − 0.165·92-s + 0.827·94-s + 1.33·98-s − 2.61·106-s − 1.61·107-s + ⋯ |
Λ(s)=(=(3375s/2ΓC(s)L(s)Λ(1−s)
Λ(s)=(=(3375s/2ΓC(s)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
3375
= 33⋅53
|
Sign: |
1
|
Analytic conductor: |
1.68434 |
Root analytic conductor: |
1.29782 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3375(3374,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 3375, ( :0), 1)
|
Particular Values
L(21) |
≈ |
2.538436045 |
L(21) |
≈ |
2.538436045 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
good | 2 | 1−1.33T+T2 |
| 7 | 1−T2 |
| 11 | 1−T2 |
| 13 | 1−T2 |
| 17 | 1−1.82T+T2 |
| 19 | 1−1.33T+T2 |
| 23 | 1+0.209T+T2 |
| 29 | 1−T2 |
| 31 | 1−1.82T+T2 |
| 37 | 1−T2 |
| 41 | 1−T2 |
| 43 | 1−T2 |
| 47 | 1−0.618T+T2 |
| 53 | 1+1.95T+T2 |
| 59 | 1−T2 |
| 61 | 1+1.95T+T2 |
| 67 | 1−T2 |
| 71 | 1−T2 |
| 73 | 1−T2 |
| 79 | 1+1.95T+T2 |
| 83 | 1+1.95T+T2 |
| 89 | 1−T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.757559404778757287260412450887, −7.84074538217986916015680000977, −7.23053151582233900614204327311, −6.18778841810694993695568679747, −5.69712574898164366499901375615, −4.96009851236727662115523264904, −4.22696648210132150076729840492, −3.25941969567978494669220389188, −2.81707069808496930006828393459, −1.28555287507302653788962362903,
1.28555287507302653788962362903, 2.81707069808496930006828393459, 3.25941969567978494669220389188, 4.22696648210132150076729840492, 4.96009851236727662115523264904, 5.69712574898164366499901375615, 6.18778841810694993695568679747, 7.23053151582233900614204327311, 7.84074538217986916015680000977, 8.757559404778757287260412450887