L(s) = 1 | + (0.190 − 0.587i)2-s + (0.5 + 0.363i)4-s + 0.618i·7-s + (0.809 − 0.587i)8-s + (0.951 + 0.309i)11-s + (0.363 + 0.118i)14-s + (0.809 − 0.587i)17-s + (−0.809 + 0.587i)19-s + (0.363 − 0.5i)22-s + (0.309 − 0.951i)23-s + (−0.224 + 0.309i)28-s + (−0.951 + 1.30i)29-s + 32-s + (−0.190 − 0.587i)34-s + (−1.53 + 0.5i)37-s + (0.190 + 0.587i)38-s + ⋯ |
L(s) = 1 | + (0.190 − 0.587i)2-s + (0.5 + 0.363i)4-s + 0.618i·7-s + (0.809 − 0.587i)8-s + (0.951 + 0.309i)11-s + (0.363 + 0.118i)14-s + (0.809 − 0.587i)17-s + (−0.809 + 0.587i)19-s + (0.363 − 0.5i)22-s + (0.309 − 0.951i)23-s + (−0.224 + 0.309i)28-s + (−0.951 + 1.30i)29-s + 32-s + (−0.190 − 0.587i)34-s + (−1.53 + 0.5i)37-s + (0.190 + 0.587i)38-s + ⋯ |
Λ(s)=(=(3375s/2ΓC(s)L(s)(0.990+0.137i)Λ(1−s)
Λ(s)=(=(3375s/2ΓC(s)L(s)(0.990+0.137i)Λ(1−s)
Degree: |
2 |
Conductor: |
3375
= 33⋅53
|
Sign: |
0.990+0.137i
|
Analytic conductor: |
1.68434 |
Root analytic conductor: |
1.29782 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3375(2024,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3375, ( :0), 0.990+0.137i)
|
Particular Values
L(21) |
≈ |
1.814753259 |
L(21) |
≈ |
1.814753259 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
good | 2 | 1+(−0.190+0.587i)T+(−0.809−0.587i)T2 |
| 7 | 1−0.618iT−T2 |
| 11 | 1+(−0.951−0.309i)T+(0.809+0.587i)T2 |
| 13 | 1+(0.809−0.587i)T2 |
| 17 | 1+(−0.809+0.587i)T+(0.309−0.951i)T2 |
| 19 | 1+(0.809−0.587i)T+(0.309−0.951i)T2 |
| 23 | 1+(−0.309+0.951i)T+(−0.809−0.587i)T2 |
| 29 | 1+(0.951−1.30i)T+(−0.309−0.951i)T2 |
| 31 | 1+(0.309−0.951i)T2 |
| 37 | 1+(1.53−0.5i)T+(0.809−0.587i)T2 |
| 41 | 1+(−0.951+0.309i)T+(0.809−0.587i)T2 |
| 43 | 1−T2 |
| 47 | 1+(1.30+0.951i)T+(0.309+0.951i)T2 |
| 53 | 1+(−0.5−0.363i)T+(0.309+0.951i)T2 |
| 59 | 1+(0.809−0.587i)T2 |
| 61 | 1+(0.309−0.951i)T+(−0.809−0.587i)T2 |
| 67 | 1+(0.363+0.5i)T+(−0.309+0.951i)T2 |
| 71 | 1+(−0.951+1.30i)T+(−0.309−0.951i)T2 |
| 73 | 1+(0.809+0.587i)T2 |
| 79 | 1+(−1.30−0.951i)T+(0.309+0.951i)T2 |
| 83 | 1+(0.5−0.363i)T+(0.309−0.951i)T2 |
| 89 | 1+(0.951+0.309i)T+(0.809+0.587i)T2 |
| 97 | 1+(−0.587+0.809i)T+(−0.309−0.951i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.815986022271907191301223247750, −8.097557626405148496907089449777, −7.13815426204121128206874913953, −6.69968513588744557734505972401, −5.75104921929179846135189755015, −4.84288962609552941080537534787, −3.89023645500129368226229263369, −3.23193908112851736057354896403, −2.25252821613182854163250819550, −1.43160450307850129520232372989,
1.18712356863815812952797011067, 2.15155011242515581392475843215, 3.47778989169615192267272742265, 4.19562795238856637335805730037, 5.17573704514736112174493575727, 5.95486752473156564757581521308, 6.51463640767243350767248234583, 7.28372089157090954529625760987, 7.82376882045222861586065657412, 8.694963801476350562316918180464