L(s) = 1 | + (0.587 − 0.190i)2-s + (−0.5 + 0.363i)4-s − 0.618·7-s + (−0.587 + 0.809i)8-s + (0.951 − 0.309i)11-s + (−0.363 + 0.118i)14-s + (0.587 − 0.809i)17-s + (0.809 + 0.587i)19-s + (0.5 − 0.363i)22-s + (−0.951 + 0.309i)23-s + (0.309 − 0.224i)28-s + (0.951 + 1.30i)29-s − i·32-s + (0.190 − 0.587i)34-s + (−0.5 + 1.53i)37-s + (0.587 + 0.190i)38-s + ⋯ |
L(s) = 1 | + (0.587 − 0.190i)2-s + (−0.5 + 0.363i)4-s − 0.618·7-s + (−0.587 + 0.809i)8-s + (0.951 − 0.309i)11-s + (−0.363 + 0.118i)14-s + (0.587 − 0.809i)17-s + (0.809 + 0.587i)19-s + (0.5 − 0.363i)22-s + (−0.951 + 0.309i)23-s + (0.309 − 0.224i)28-s + (0.951 + 1.30i)29-s − i·32-s + (0.190 − 0.587i)34-s + (−0.5 + 1.53i)37-s + (0.587 + 0.190i)38-s + ⋯ |
Λ(s)=(=(3375s/2ΓC(s)L(s)(0.770−0.637i)Λ(1−s)
Λ(s)=(=(3375s/2ΓC(s)L(s)(0.770−0.637i)Λ(1−s)
Degree: |
2 |
Conductor: |
3375
= 33⋅53
|
Sign: |
0.770−0.637i
|
Analytic conductor: |
1.68434 |
Root analytic conductor: |
1.29782 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ3375(26,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 3375, ( :0), 0.770−0.637i)
|
Particular Values
L(21) |
≈ |
1.380715329 |
L(21) |
≈ |
1.380715329 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1 |
good | 2 | 1+(−0.587+0.190i)T+(0.809−0.587i)T2 |
| 7 | 1+0.618T+T2 |
| 11 | 1+(−0.951+0.309i)T+(0.809−0.587i)T2 |
| 13 | 1+(−0.809−0.587i)T2 |
| 17 | 1+(−0.587+0.809i)T+(−0.309−0.951i)T2 |
| 19 | 1+(−0.809−0.587i)T+(0.309+0.951i)T2 |
| 23 | 1+(0.951−0.309i)T+(0.809−0.587i)T2 |
| 29 | 1+(−0.951−1.30i)T+(−0.309+0.951i)T2 |
| 31 | 1+(0.309+0.951i)T2 |
| 37 | 1+(0.5−1.53i)T+(−0.809−0.587i)T2 |
| 41 | 1+(−0.951−0.309i)T+(0.809+0.587i)T2 |
| 43 | 1+T2 |
| 47 | 1+(−0.951−1.30i)T+(−0.309+0.951i)T2 |
| 53 | 1+(−0.363−0.5i)T+(−0.309+0.951i)T2 |
| 59 | 1+(0.809+0.587i)T2 |
| 61 | 1+(0.309+0.951i)T+(−0.809+0.587i)T2 |
| 67 | 1+(−0.5−0.363i)T+(0.309+0.951i)T2 |
| 71 | 1+(−0.951−1.30i)T+(−0.309+0.951i)T2 |
| 73 | 1+(−0.809+0.587i)T2 |
| 79 | 1+(1.30−0.951i)T+(0.309−0.951i)T2 |
| 83 | 1+(−0.363+0.5i)T+(−0.309−0.951i)T2 |
| 89 | 1+(−0.951+0.309i)T+(0.809−0.587i)T2 |
| 97 | 1+(−0.809+0.587i)T+(0.309−0.951i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.914709093613294634087650922584, −8.177951826718702642677008181575, −7.41148149961304476251936588104, −6.49580441405776329845077131596, −5.76970952376119644712926847724, −4.99746651758078235522363372333, −4.14045904344825707025925792716, −3.36247672170627758410762225312, −2.82570393338442623337829796625, −1.23797899058232323698002500727,
0.810738413735601281582788373788, 2.23231532146518522368893779632, 3.55458023567640894416274516656, 3.98559631915088052707009646969, 4.87235673141337868489788547633, 5.80243054361561462943397091587, 6.25858317941318452388920783453, 7.02526505541967281770161235613, 7.926915384663545089319119093808, 8.897361276246088711709662470295