L(s) = 1 | + (0.587 − 0.190i)2-s + (−0.5 + 0.363i)4-s − 0.618·7-s + (−0.587 + 0.809i)8-s + (0.951 − 0.309i)11-s + (−0.363 + 0.118i)14-s + (0.587 − 0.809i)17-s + (0.809 + 0.587i)19-s + (0.5 − 0.363i)22-s + (−0.951 + 0.309i)23-s + (0.309 − 0.224i)28-s + (0.951 + 1.30i)29-s − i·32-s + (0.190 − 0.587i)34-s + (−0.5 + 1.53i)37-s + (0.587 + 0.190i)38-s + ⋯ |
L(s) = 1 | + (0.587 − 0.190i)2-s + (−0.5 + 0.363i)4-s − 0.618·7-s + (−0.587 + 0.809i)8-s + (0.951 − 0.309i)11-s + (−0.363 + 0.118i)14-s + (0.587 − 0.809i)17-s + (0.809 + 0.587i)19-s + (0.5 − 0.363i)22-s + (−0.951 + 0.309i)23-s + (0.309 − 0.224i)28-s + (0.951 + 1.30i)29-s − i·32-s + (0.190 − 0.587i)34-s + (−0.5 + 1.53i)37-s + (0.587 + 0.190i)38-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3375 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.770 - 0.637i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3375 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.770 - 0.637i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.380715329\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.380715329\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
good | 2 | \( 1 + (-0.587 + 0.190i)T + (0.809 - 0.587i)T^{2} \) |
| 7 | \( 1 + 0.618T + T^{2} \) |
| 11 | \( 1 + (-0.951 + 0.309i)T + (0.809 - 0.587i)T^{2} \) |
| 13 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 17 | \( 1 + (-0.587 + 0.809i)T + (-0.309 - 0.951i)T^{2} \) |
| 19 | \( 1 + (-0.809 - 0.587i)T + (0.309 + 0.951i)T^{2} \) |
| 23 | \( 1 + (0.951 - 0.309i)T + (0.809 - 0.587i)T^{2} \) |
| 29 | \( 1 + (-0.951 - 1.30i)T + (-0.309 + 0.951i)T^{2} \) |
| 31 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 37 | \( 1 + (0.5 - 1.53i)T + (-0.809 - 0.587i)T^{2} \) |
| 41 | \( 1 + (-0.951 - 0.309i)T + (0.809 + 0.587i)T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + (-0.951 - 1.30i)T + (-0.309 + 0.951i)T^{2} \) |
| 53 | \( 1 + (-0.363 - 0.5i)T + (-0.309 + 0.951i)T^{2} \) |
| 59 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 61 | \( 1 + (0.309 + 0.951i)T + (-0.809 + 0.587i)T^{2} \) |
| 67 | \( 1 + (-0.5 - 0.363i)T + (0.309 + 0.951i)T^{2} \) |
| 71 | \( 1 + (-0.951 - 1.30i)T + (-0.309 + 0.951i)T^{2} \) |
| 73 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 79 | \( 1 + (1.30 - 0.951i)T + (0.309 - 0.951i)T^{2} \) |
| 83 | \( 1 + (-0.363 + 0.5i)T + (-0.309 - 0.951i)T^{2} \) |
| 89 | \( 1 + (-0.951 + 0.309i)T + (0.809 - 0.587i)T^{2} \) |
| 97 | \( 1 + (-0.809 + 0.587i)T + (0.309 - 0.951i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.914709093613294634087650922584, −8.177951826718702642677008181575, −7.41148149961304476251936588104, −6.49580441405776329845077131596, −5.76970952376119644712926847724, −4.99746651758078235522363372333, −4.14045904344825707025925792716, −3.36247672170627758410762225312, −2.82570393338442623337829796625, −1.23797899058232323698002500727,
0.810738413735601281582788373788, 2.23231532146518522368893779632, 3.55458023567640894416274516656, 3.98559631915088052707009646969, 4.87235673141337868489788547633, 5.80243054361561462943397091587, 6.25858317941318452388920783453, 7.02526505541967281770161235613, 7.926915384663545089319119093808, 8.897361276246088711709662470295