L(s) = 1 | + (−1.96 − 2.03i)2-s + (3.68 + 8.88i)3-s + (−0.316 + 7.99i)4-s + (−6.53 − 9.07i)5-s + (10.9 − 24.9i)6-s − 30.1i·7-s + (16.9 − 15.0i)8-s + (−46.3 + 46.3i)9-s + (−5.69 + 31.1i)10-s + (−7.33 − 17.7i)11-s + (−72.1 + 26.6i)12-s + (−3.98 − 9.61i)13-s + (−61.4 + 59.0i)14-s + (56.5 − 91.4i)15-s + (−63.7 − 5.05i)16-s + (60.6 − 60.6i)17-s + ⋯ |
L(s) = 1 | + (−0.692 − 0.720i)2-s + (0.708 + 1.71i)3-s + (−0.0395 + 0.999i)4-s + (−0.584 − 0.811i)5-s + (0.742 − 1.69i)6-s − 1.62i·7-s + (0.747 − 0.663i)8-s + (−1.71 + 1.71i)9-s + (−0.179 + 0.983i)10-s + (−0.201 − 0.485i)11-s + (−1.73 + 0.640i)12-s + (−0.0850 − 0.205i)13-s + (−1.17 + 1.12i)14-s + (0.973 − 1.57i)15-s + (−0.996 − 0.0790i)16-s + (0.864 − 0.864i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0970 + 0.995i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 160 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.0970 + 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.725340 - 0.658048i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.725340 - 0.658048i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.96 + 2.03i)T \) |
| 5 | \( 1 + (6.53 + 9.07i)T \) |
good | 3 | \( 1 + (-3.68 - 8.88i)T + (-19.0 + 19.0i)T^{2} \) |
| 7 | \( 1 + 30.1iT - 343T^{2} \) |
| 11 | \( 1 + (7.33 + 17.7i)T + (-941. + 941. i)T^{2} \) |
| 13 | \( 1 + (3.98 + 9.61i)T + (-1.55e3 + 1.55e3i)T^{2} \) |
| 17 | \( 1 + (-60.6 + 60.6i)T - 4.91e3iT^{2} \) |
| 19 | \( 1 + (-20.4 + 49.2i)T + (-4.85e3 - 4.85e3i)T^{2} \) |
| 23 | \( 1 - 56.6iT - 1.21e4T^{2} \) |
| 29 | \( 1 + (-107. + 260. i)T + (-1.72e4 - 1.72e4i)T^{2} \) |
| 31 | \( 1 + 158. iT - 2.97e4T^{2} \) |
| 37 | \( 1 + (65.1 - 157. i)T + (-3.58e4 - 3.58e4i)T^{2} \) |
| 41 | \( 1 + (-104. - 104. i)T + 6.89e4iT^{2} \) |
| 43 | \( 1 + (243. + 100. i)T + (5.62e4 + 5.62e4i)T^{2} \) |
| 47 | \( 1 + (-176. - 176. i)T + 1.03e5iT^{2} \) |
| 53 | \( 1 + (-132. + 319. i)T + (-1.05e5 - 1.05e5i)T^{2} \) |
| 59 | \( 1 + (247. + 597. i)T + (-1.45e5 + 1.45e5i)T^{2} \) |
| 61 | \( 1 + (402. + 166. i)T + (1.60e5 + 1.60e5i)T^{2} \) |
| 67 | \( 1 + (330. - 136. i)T + (2.12e5 - 2.12e5i)T^{2} \) |
| 71 | \( 1 + (-132. - 132. i)T + 3.57e5iT^{2} \) |
| 73 | \( 1 + 13.2T + 3.89e5T^{2} \) |
| 79 | \( 1 - 325. iT - 4.93e5T^{2} \) |
| 83 | \( 1 + (-585. + 242. i)T + (4.04e5 - 4.04e5i)T^{2} \) |
| 89 | \( 1 + (-61.9 - 61.9i)T + 7.04e5iT^{2} \) |
| 97 | \( 1 + (-123. - 123. i)T + 9.12e5iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.70198276577217733573266416352, −10.95256439159242383919932382578, −9.966335151486651076309860829922, −9.473894132431111852480497611926, −8.245543133438560393640534052087, −7.62892305363259947621615414480, −4.87107588511979509277480586535, −4.02621744357368157602981806570, −3.13682088966351745254670094628, −0.54341939906743425996352568823,
1.67010961959143753273102364046, 2.88371529065317735877745743119, 5.67430283787259288089523925136, 6.61696373624752850701908043216, 7.48660904557178406818153746249, 8.332420502967429489646247649420, 9.021142978871436921740664712486, 10.55566605707762409377132262239, 12.09838823715606462057238586955, 12.38125338202674974441357767542