L(s) = 1 | + (−1.96 − 2.03i)2-s + (3.68 + 8.88i)3-s + (−0.316 + 7.99i)4-s + (−6.53 − 9.07i)5-s + (10.9 − 24.9i)6-s − 30.1i·7-s + (16.9 − 15.0i)8-s + (−46.3 + 46.3i)9-s + (−5.69 + 31.1i)10-s + (−7.33 − 17.7i)11-s + (−72.1 + 26.6i)12-s + (−3.98 − 9.61i)13-s + (−61.4 + 59.0i)14-s + (56.5 − 91.4i)15-s + (−63.7 − 5.05i)16-s + (60.6 − 60.6i)17-s + ⋯ |
L(s) = 1 | + (−0.692 − 0.720i)2-s + (0.708 + 1.71i)3-s + (−0.0395 + 0.999i)4-s + (−0.584 − 0.811i)5-s + (0.742 − 1.69i)6-s − 1.62i·7-s + (0.747 − 0.663i)8-s + (−1.71 + 1.71i)9-s + (−0.179 + 0.983i)10-s + (−0.201 − 0.485i)11-s + (−1.73 + 0.640i)12-s + (−0.0850 − 0.205i)13-s + (−1.17 + 1.12i)14-s + (0.973 − 1.57i)15-s + (−0.996 − 0.0790i)16-s + (0.864 − 0.864i)17-s + ⋯ |
Λ(s)=(=(160s/2ΓC(s)L(s)(0.0970+0.995i)Λ(4−s)
Λ(s)=(=(160s/2ΓC(s+3/2)L(s)(0.0970+0.995i)Λ(1−s)
Degree: |
2 |
Conductor: |
160
= 25⋅5
|
Sign: |
0.0970+0.995i
|
Analytic conductor: |
9.44030 |
Root analytic conductor: |
3.07250 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ160(67,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 160, ( :3/2), 0.0970+0.995i)
|
Particular Values
L(2) |
≈ |
0.725340−0.658048i |
L(21) |
≈ |
0.725340−0.658048i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.96+2.03i)T |
| 5 | 1+(6.53+9.07i)T |
good | 3 | 1+(−3.68−8.88i)T+(−19.0+19.0i)T2 |
| 7 | 1+30.1iT−343T2 |
| 11 | 1+(7.33+17.7i)T+(−941.+941.i)T2 |
| 13 | 1+(3.98+9.61i)T+(−1.55e3+1.55e3i)T2 |
| 17 | 1+(−60.6+60.6i)T−4.91e3iT2 |
| 19 | 1+(−20.4+49.2i)T+(−4.85e3−4.85e3i)T2 |
| 23 | 1−56.6iT−1.21e4T2 |
| 29 | 1+(−107.+260.i)T+(−1.72e4−1.72e4i)T2 |
| 31 | 1+158.iT−2.97e4T2 |
| 37 | 1+(65.1−157.i)T+(−3.58e4−3.58e4i)T2 |
| 41 | 1+(−104.−104.i)T+6.89e4iT2 |
| 43 | 1+(243.+100.i)T+(5.62e4+5.62e4i)T2 |
| 47 | 1+(−176.−176.i)T+1.03e5iT2 |
| 53 | 1+(−132.+319.i)T+(−1.05e5−1.05e5i)T2 |
| 59 | 1+(247.+597.i)T+(−1.45e5+1.45e5i)T2 |
| 61 | 1+(402.+166.i)T+(1.60e5+1.60e5i)T2 |
| 67 | 1+(330.−136.i)T+(2.12e5−2.12e5i)T2 |
| 71 | 1+(−132.−132.i)T+3.57e5iT2 |
| 73 | 1+13.2T+3.89e5T2 |
| 79 | 1−325.iT−4.93e5T2 |
| 83 | 1+(−585.+242.i)T+(4.04e5−4.04e5i)T2 |
| 89 | 1+(−61.9−61.9i)T+7.04e5iT2 |
| 97 | 1+(−123.−123.i)T+9.12e5iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.70198276577217733573266416352, −10.95256439159242383919932382578, −9.966335151486651076309860829922, −9.473894132431111852480497611926, −8.245543133438560393640534052087, −7.62892305363259947621615414480, −4.87107588511979509277480586535, −4.02621744357368157602981806570, −3.13682088966351745254670094628, −0.54341939906743425996352568823,
1.67010961959143753273102364046, 2.88371529065317735877745743119, 5.67430283787259288089523925136, 6.61696373624752850701908043216, 7.48660904557178406818153746249, 8.332420502967429489646247649420, 9.021142978871436921740664712486, 10.55566605707762409377132262239, 12.09838823715606462057238586955, 12.38125338202674974441357767542