Properties

Label 2-161-1.1-c1-0-8
Degree $2$
Conductor $161$
Sign $1$
Analytic cond. $1.28559$
Root an. cond. $1.13383$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.90·2-s + 0.688·3-s + 1.62·4-s + 0.688·5-s + 1.31·6-s − 7-s − 0.719·8-s − 2.52·9-s + 1.31·10-s − 0.903·11-s + 1.11·12-s + 0.622·13-s − 1.90·14-s + 0.474·15-s − 4.61·16-s + 1.31·17-s − 4.80·18-s + 7.05·19-s + 1.11·20-s − 0.688·21-s − 1.71·22-s + 23-s − 0.495·24-s − 4.52·25-s + 1.18·26-s − 3.80·27-s − 1.62·28-s + ⋯
L(s)  = 1  + 1.34·2-s + 0.397·3-s + 0.811·4-s + 0.308·5-s + 0.535·6-s − 0.377·7-s − 0.254·8-s − 0.841·9-s + 0.414·10-s − 0.272·11-s + 0.322·12-s + 0.172·13-s − 0.508·14-s + 0.122·15-s − 1.15·16-s + 0.317·17-s − 1.13·18-s + 1.61·19-s + 0.249·20-s − 0.150·21-s − 0.366·22-s + 0.208·23-s − 0.101·24-s − 0.905·25-s + 0.232·26-s − 0.732·27-s − 0.306·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(161\)    =    \(7 \cdot 23\)
Sign: $1$
Analytic conductor: \(1.28559\)
Root analytic conductor: \(1.13383\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 161,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.169804218\)
\(L(\frac12)\) \(\approx\) \(2.169804218\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + T \)
23 \( 1 - T \)
good2 \( 1 - 1.90T + 2T^{2} \)
3 \( 1 - 0.688T + 3T^{2} \)
5 \( 1 - 0.688T + 5T^{2} \)
11 \( 1 + 0.903T + 11T^{2} \)
13 \( 1 - 0.622T + 13T^{2} \)
17 \( 1 - 1.31T + 17T^{2} \)
19 \( 1 - 7.05T + 19T^{2} \)
29 \( 1 - 1.52T + 29T^{2} \)
31 \( 1 + 3.54T + 31T^{2} \)
37 \( 1 - 2.42T + 37T^{2} \)
41 \( 1 + 4.75T + 41T^{2} \)
43 \( 1 - 6.23T + 43T^{2} \)
47 \( 1 - 9.73T + 47T^{2} \)
53 \( 1 + 6.85T + 53T^{2} \)
59 \( 1 - 9.97T + 59T^{2} \)
61 \( 1 - 7.87T + 61T^{2} \)
67 \( 1 + 5.76T + 67T^{2} \)
71 \( 1 + 7.61T + 71T^{2} \)
73 \( 1 + 1.86T + 73T^{2} \)
79 \( 1 - 7.65T + 79T^{2} \)
83 \( 1 + 11.0T + 83T^{2} \)
89 \( 1 + 2.98T + 89T^{2} \)
97 \( 1 + 2.49T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.14446776459336635904302526611, −12.09907248256119464652281466351, −11.28770868384557649052007499889, −9.812237284427036848244126087118, −8.839254133771052909051243973350, −7.44256206948148874183163941005, −6.00199631734413905374414197200, −5.28492078504906890939946069597, −3.71715355489902784426571498999, −2.70320216301554500345995445588, 2.70320216301554500345995445588, 3.71715355489902784426571498999, 5.28492078504906890939946069597, 6.00199631734413905374414197200, 7.44256206948148874183163941005, 8.839254133771052909051243973350, 9.812237284427036848244126087118, 11.28770868384557649052007499889, 12.09907248256119464652281466351, 13.14446776459336635904302526611

Graph of the $Z$-function along the critical line