Properties

Label 2-161-1.1-c3-0-6
Degree $2$
Conductor $161$
Sign $1$
Analytic cond. $9.49930$
Root an. cond. $3.08209$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.55·2-s − 5.72·3-s + 12.7·4-s + 17.5·5-s + 26.0·6-s − 7·7-s − 21.5·8-s + 5.72·9-s − 80.0·10-s + 26.0·11-s − 72.8·12-s − 42.9·13-s + 31.8·14-s − 100.·15-s − 3.85·16-s − 56.6·17-s − 26.0·18-s + 102.·19-s + 223.·20-s + 40.0·21-s − 118.·22-s − 23·23-s + 123.·24-s + 184.·25-s + 195.·26-s + 121.·27-s − 89.0·28-s + ⋯
L(s)  = 1  − 1.60·2-s − 1.10·3-s + 1.59·4-s + 1.57·5-s + 1.77·6-s − 0.377·7-s − 0.950·8-s + 0.212·9-s − 2.53·10-s + 0.713·11-s − 1.75·12-s − 0.916·13-s + 0.608·14-s − 1.73·15-s − 0.0602·16-s − 0.807·17-s − 0.341·18-s + 1.24·19-s + 2.50·20-s + 0.416·21-s − 1.14·22-s − 0.208·23-s + 1.04·24-s + 1.47·25-s + 1.47·26-s + 0.867·27-s − 0.601·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(161\)    =    \(7 \cdot 23\)
Sign: $1$
Analytic conductor: \(9.49930\)
Root analytic conductor: \(3.08209\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 161,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.6077602063\)
\(L(\frac12)\) \(\approx\) \(0.6077602063\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad7 \( 1 + 7T \)
23 \( 1 + 23T \)
good2 \( 1 + 4.55T + 8T^{2} \)
3 \( 1 + 5.72T + 27T^{2} \)
5 \( 1 - 17.5T + 125T^{2} \)
11 \( 1 - 26.0T + 1.33e3T^{2} \)
13 \( 1 + 42.9T + 2.19e3T^{2} \)
17 \( 1 + 56.6T + 4.91e3T^{2} \)
19 \( 1 - 102.T + 6.85e3T^{2} \)
29 \( 1 + 59.7T + 2.43e4T^{2} \)
31 \( 1 - 249.T + 2.97e4T^{2} \)
37 \( 1 - 119.T + 5.06e4T^{2} \)
41 \( 1 + 263.T + 6.89e4T^{2} \)
43 \( 1 - 210.T + 7.95e4T^{2} \)
47 \( 1 + 446.T + 1.03e5T^{2} \)
53 \( 1 - 462.T + 1.48e5T^{2} \)
59 \( 1 - 884.T + 2.05e5T^{2} \)
61 \( 1 - 415.T + 2.26e5T^{2} \)
67 \( 1 - 506.T + 3.00e5T^{2} \)
71 \( 1 - 837.T + 3.57e5T^{2} \)
73 \( 1 - 565.T + 3.89e5T^{2} \)
79 \( 1 - 20.0T + 4.93e5T^{2} \)
83 \( 1 + 701.T + 5.71e5T^{2} \)
89 \( 1 + 1.85T + 7.04e5T^{2} \)
97 \( 1 + 165.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.94831884402593704714748323614, −11.16600820979760910630464435952, −9.908925751016919868040863615973, −9.778968077145821689447111548180, −8.601216237301081968724163473873, −6.98313760084618400765662379684, −6.29451506140610242456471126558, −5.14513655524434214994296502823, −2.31632463470666705116842478073, −0.843085375051097346602180564176, 0.843085375051097346602180564176, 2.31632463470666705116842478073, 5.14513655524434214994296502823, 6.29451506140610242456471126558, 6.98313760084618400765662379684, 8.601216237301081968724163473873, 9.778968077145821689447111548180, 9.908925751016919868040863615973, 11.16600820979760910630464435952, 11.94831884402593704714748323614

Graph of the $Z$-function along the critical line