L(s) = 1 | + (−0.601 + 1.73i)2-s + (0.530 + 1.02i)3-s + (−1.09 − 0.857i)4-s + (−1.45 + 0.138i)5-s + (−2.10 + 0.303i)6-s + (−2.03 + 1.69i)7-s + (−0.948 + 0.609i)8-s + (0.962 − 1.35i)9-s + (0.633 − 2.61i)10-s + (−0.0712 + 0.0246i)11-s + (0.303 − 1.57i)12-s + (1.89 + 6.45i)13-s + (−1.72 − 4.55i)14-s + (−0.913 − 1.42i)15-s + (−1.14 − 4.71i)16-s + (−0.122 − 0.0489i)17-s + ⋯ |
L(s) = 1 | + (−0.425 + 1.22i)2-s + (0.306 + 0.594i)3-s + (−0.545 − 0.428i)4-s + (−0.649 + 0.0620i)5-s + (−0.860 + 0.123i)6-s + (−0.767 + 0.640i)7-s + (−0.335 + 0.215i)8-s + (0.320 − 0.450i)9-s + (0.200 − 0.825i)10-s + (−0.0214 + 0.00743i)11-s + (0.0877 − 0.455i)12-s + (0.525 + 1.79i)13-s + (−0.461 − 1.21i)14-s + (−0.235 − 0.366i)15-s + (−0.285 − 1.17i)16-s + (−0.0296 − 0.0118i)17-s + ⋯ |
Λ(s)=(=(161s/2ΓC(s)L(s)(−0.988−0.148i)Λ(2−s)
Λ(s)=(=(161s/2ΓC(s+1/2)L(s)(−0.988−0.148i)Λ(1−s)
Degree: |
2 |
Conductor: |
161
= 7⋅23
|
Sign: |
−0.988−0.148i
|
Analytic conductor: |
1.28559 |
Root analytic conductor: |
1.13383 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ161(10,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 161, ( :1/2), −0.988−0.148i)
|
Particular Values
L(1) |
≈ |
0.0614640+0.825012i |
L(21) |
≈ |
0.0614640+0.825012i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+(2.03−1.69i)T |
| 23 | 1+(3.15+3.61i)T |
good | 2 | 1+(0.601−1.73i)T+(−1.57−1.23i)T2 |
| 3 | 1+(−0.530−1.02i)T+(−1.74+2.44i)T2 |
| 5 | 1+(1.45−0.138i)T+(4.90−0.946i)T2 |
| 11 | 1+(0.0712−0.0246i)T+(8.64−6.79i)T2 |
| 13 | 1+(−1.89−6.45i)T+(−10.9+7.02i)T2 |
| 17 | 1+(0.122+0.0489i)T+(12.3+11.7i)T2 |
| 19 | 1+(−6.22+2.49i)T+(13.7−13.1i)T2 |
| 29 | 1+(−1.08−7.51i)T+(−27.8+8.17i)T2 |
| 31 | 1+(−8.46+0.403i)T+(30.8−2.94i)T2 |
| 37 | 1+(−4.96−3.53i)T+(12.1+34.9i)T2 |
| 41 | 1+(−0.923−0.421i)T+(26.8+30.9i)T2 |
| 43 | 1+(2.48−3.86i)T+(−17.8−39.1i)T2 |
| 47 | 1+(0.735−0.424i)T+(23.5−40.7i)T2 |
| 53 | 1+(6.26+6.57i)T+(−2.52+52.9i)T2 |
| 59 | 1+(−5.69−1.38i)T+(52.4+27.0i)T2 |
| 61 | 1+(1.85+0.957i)T+(35.3+49.6i)T2 |
| 67 | 1+(2.00+10.3i)T+(−62.2+24.9i)T2 |
| 71 | 1+(2.67+3.08i)T+(−10.1+70.2i)T2 |
| 73 | 1+(−0.126+0.160i)T+(−17.2−70.9i)T2 |
| 79 | 1+(−4.20+4.40i)T+(−3.75−78.9i)T2 |
| 83 | 1+(4.32+9.47i)T+(−54.3+62.7i)T2 |
| 89 | 1+(0.572−12.0i)T+(−88.5−8.45i)T2 |
| 97 | 1+(0.934−2.04i)T+(−63.5−73.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.73808802523294591372169199502, −12.17572491446894516427831760901, −11.51852609650035285899008910598, −9.743808544752799041819930947853, −9.168437006637021286143972857834, −8.253184921928359619208424539453, −6.93662293134136347444805053019, −6.27820590993704384633329865643, −4.63389646948726101146096958465, −3.20636708761911581915962979194,
0.935131479174652699274597432744, 2.82915703925132000836328278093, 3.88817646950641330017945664041, 5.98065274108846857437833468019, 7.54416040598786220170437131269, 8.180416400824753117572401901969, 9.828372405496682667939735731783, 10.27158276183574085101598203279, 11.44748291906350347793702855161, 12.30871624546155329949727955291