L(s) = 1 | + (0.318 − 0.919i)2-s + (0.100 + 0.194i)3-s + (0.827 + 0.650i)4-s + (−1.63 + 0.156i)5-s + (0.210 − 0.0303i)6-s + (2.63 + 0.196i)7-s + (2.49 − 1.60i)8-s + (1.71 − 2.40i)9-s + (−0.376 + 1.55i)10-s + (−1.66 + 0.576i)11-s + (−0.0436 + 0.226i)12-s + (0.504 + 1.71i)13-s + (1.02 − 2.36i)14-s + (−0.194 − 0.302i)15-s + (−0.185 − 0.765i)16-s + (−1.46 − 0.588i)17-s + ⋯ |
L(s) = 1 | + (0.225 − 0.650i)2-s + (0.0579 + 0.112i)3-s + (0.413 + 0.325i)4-s + (−0.731 + 0.0698i)5-s + (0.0861 − 0.0123i)6-s + (0.997 + 0.0743i)7-s + (0.883 − 0.567i)8-s + (0.570 − 0.801i)9-s + (−0.119 + 0.491i)10-s + (−0.501 + 0.173i)11-s + (−0.0125 + 0.0653i)12-s + (0.139 + 0.476i)13-s + (0.272 − 0.631i)14-s + (−0.0501 − 0.0781i)15-s + (−0.0464 − 0.191i)16-s + (−0.356 − 0.142i)17-s + ⋯ |
Λ(s)=(=(161s/2ΓC(s)L(s)(0.866+0.499i)Λ(2−s)
Λ(s)=(=(161s/2ΓC(s+1/2)L(s)(0.866+0.499i)Λ(1−s)
Degree: |
2 |
Conductor: |
161
= 7⋅23
|
Sign: |
0.866+0.499i
|
Analytic conductor: |
1.28559 |
Root analytic conductor: |
1.13383 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ161(10,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 161, ( :1/2), 0.866+0.499i)
|
Particular Values
L(1) |
≈ |
1.37085−0.366550i |
L(21) |
≈ |
1.37085−0.366550i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+(−2.63−0.196i)T |
| 23 | 1+(4.30+2.11i)T |
good | 2 | 1+(−0.318+0.919i)T+(−1.57−1.23i)T2 |
| 3 | 1+(−0.100−0.194i)T+(−1.74+2.44i)T2 |
| 5 | 1+(1.63−0.156i)T+(4.90−0.946i)T2 |
| 11 | 1+(1.66−0.576i)T+(8.64−6.79i)T2 |
| 13 | 1+(−0.504−1.71i)T+(−10.9+7.02i)T2 |
| 17 | 1+(1.46+0.588i)T+(12.3+11.7i)T2 |
| 19 | 1+(5.01−2.00i)T+(13.7−13.1i)T2 |
| 29 | 1+(−0.374−2.60i)T+(−27.8+8.17i)T2 |
| 31 | 1+(−2.61+0.124i)T+(30.8−2.94i)T2 |
| 37 | 1+(0.803+0.571i)T+(12.1+34.9i)T2 |
| 41 | 1+(8.66+3.95i)T+(26.8+30.9i)T2 |
| 43 | 1+(0.488−0.760i)T+(−17.8−39.1i)T2 |
| 47 | 1+(3.61−2.08i)T+(23.5−40.7i)T2 |
| 53 | 1+(−0.118−0.124i)T+(−2.52+52.9i)T2 |
| 59 | 1+(−7.99−1.93i)T+(52.4+27.0i)T2 |
| 61 | 1+(8.21+4.23i)T+(35.3+49.6i)T2 |
| 67 | 1+(−1.93−10.0i)T+(−62.2+24.9i)T2 |
| 71 | 1+(0.969+1.11i)T+(−10.1+70.2i)T2 |
| 73 | 1+(−6.13+7.80i)T+(−17.2−70.9i)T2 |
| 79 | 1+(−11.2+11.8i)T+(−3.75−78.9i)T2 |
| 83 | 1+(−5.57−12.2i)T+(−54.3+62.7i)T2 |
| 89 | 1+(−0.563+11.8i)T+(−88.5−8.45i)T2 |
| 97 | 1+(5.49−12.0i)T+(−63.5−73.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.41648009664203122071929379918, −11.89628365617482802058154433133, −10.97960341853672263135264305138, −10.11561712160910298453516764894, −8.555897290211869544490335457809, −7.64307113124653144480960568283, −6.54659136329791103850084160655, −4.57264644693304889007233773719, −3.71494101681311483207314884224, −1.97395979102939318204778252592,
2.03141245114383833722645573082, 4.33502077107473761622042738616, 5.29723124836754827049521990751, 6.67410017228748357292620100770, 7.902789577318074033455929123881, 8.177196881908712612886579992058, 10.23625865784917470878142188007, 10.96897214102866627283886387820, 11.83285522604387892835482121155, 13.23130316959584708858975130958