L(s) = 1 | + (−1.50 − 1.18i)2-s + (−0.564 + 0.792i)3-s + (0.396 + 1.63i)4-s + (−0.812 + 0.156i)5-s + (1.79 − 0.526i)6-s + (−1.33 − 2.28i)7-s + (−0.253 + 0.554i)8-s + (0.671 + 1.94i)9-s + (1.41 + 0.727i)10-s + (−3.74 + 2.94i)11-s + (−1.52 − 0.608i)12-s + (−3.75 + 2.41i)13-s + (−0.688 + 5.03i)14-s + (0.334 − 0.732i)15-s + (4.03 − 2.07i)16-s + (4.06 + 3.87i)17-s + ⋯ |
L(s) = 1 | + (−1.06 − 0.838i)2-s + (−0.325 + 0.457i)3-s + (0.198 + 0.817i)4-s + (−0.363 + 0.0700i)5-s + (0.731 − 0.214i)6-s + (−0.505 − 0.862i)7-s + (−0.0894 + 0.195i)8-s + (0.223 + 0.646i)9-s + (0.446 + 0.230i)10-s + (−1.12 + 0.888i)11-s + (−0.438 − 0.175i)12-s + (−1.04 + 0.669i)13-s + (−0.184 + 1.34i)14-s + (0.0863 − 0.189i)15-s + (1.00 − 0.519i)16-s + (0.986 + 0.940i)17-s + ⋯ |
Λ(s)=(=(161s/2ΓC(s)L(s)(−0.177−0.984i)Λ(2−s)
Λ(s)=(=(161s/2ΓC(s+1/2)L(s)(−0.177−0.984i)Λ(1−s)
Degree: |
2 |
Conductor: |
161
= 7⋅23
|
Sign: |
−0.177−0.984i
|
Analytic conductor: |
1.28559 |
Root analytic conductor: |
1.13383 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ161(100,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 161, ( :1/2), −0.177−0.984i)
|
Particular Values
L(1) |
≈ |
0.134388+0.160774i |
L(21) |
≈ |
0.134388+0.160774i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+(1.33+2.28i)T |
| 23 | 1+(4.76+0.569i)T |
good | 2 | 1+(1.50+1.18i)T+(0.471+1.94i)T2 |
| 3 | 1+(0.564−0.792i)T+(−0.981−2.83i)T2 |
| 5 | 1+(0.812−0.156i)T+(4.64−1.85i)T2 |
| 11 | 1+(3.74−2.94i)T+(2.59−10.6i)T2 |
| 13 | 1+(3.75−2.41i)T+(5.40−11.8i)T2 |
| 17 | 1+(−4.06−3.87i)T+(0.808+16.9i)T2 |
| 19 | 1+(−0.735+0.701i)T+(0.904−18.9i)T2 |
| 29 | 1+(6.21−1.82i)T+(24.3−15.6i)T2 |
| 31 | 1+(−9.48+0.905i)T+(30.4−5.86i)T2 |
| 37 | 1+(3.19+9.23i)T+(−29.0+22.8i)T2 |
| 41 | 1+(−1.65−1.91i)T+(−5.83+40.5i)T2 |
| 43 | 1+(1.75+3.83i)T+(−28.1+32.4i)T2 |
| 47 | 1+(−1.59+2.76i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−0.0701+1.47i)T+(−52.7−5.03i)T2 |
| 59 | 1+(1.25+0.646i)T+(34.2+48.0i)T2 |
| 61 | 1+(−3.59−5.04i)T+(−19.9+57.6i)T2 |
| 67 | 1+(−0.641+0.256i)T+(48.4−46.2i)T2 |
| 71 | 1+(−0.382+2.65i)T+(−68.1−20.0i)T2 |
| 73 | 1+(−3.48−14.3i)T+(−64.8+33.4i)T2 |
| 79 | 1+(−0.428−8.99i)T+(−78.6+7.50i)T2 |
| 83 | 1+(−0.874+1.00i)T+(−11.8−82.1i)T2 |
| 89 | 1+(−9.14−0.872i)T+(87.3+16.8i)T2 |
| 97 | 1+(−2.97−3.43i)T+(−13.8+96.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.78465505982718584968929705735, −11.88398371175339884826873502445, −10.78815826103341232979571788747, −10.08604476205786934468093878813, −9.694011055127124032125863108122, −7.991181612172926085506579763720, −7.36091114798159858837211087006, −5.38920733770409123735736204866, −4.00387396687050347475728501831, −2.17556727431797961745889276513,
0.27691127081737558956578050787, 3.12463736017775270383203340264, 5.47728887601823494634803495798, 6.33898317807467125044176465754, 7.63273086371976159119890259690, 8.145610849529434503241163268017, 9.511486221509587833970891671678, 10.10016433123245819428626494249, 11.84391089271309400579178396065, 12.35961875432616687131711209135