L(s) = 1 | + (0.0675 + 1.41i)2-s + (0.681 + 1.70i)3-s + (−0.0160 + 0.00153i)4-s + (0.132 − 0.546i)5-s + (−2.36 + 1.08i)6-s + (2.36 − 1.17i)7-s + (0.400 + 2.78i)8-s + (−0.258 + 0.246i)9-s + (0.783 + 0.151i)10-s + (−5.46 − 0.260i)11-s + (−0.0135 − 0.0262i)12-s + (−3.18 − 2.76i)13-s + (1.83 + 3.27i)14-s + (1.01 − 0.146i)15-s + (−3.95 + 0.763i)16-s + (2.00 − 2.81i)17-s + ⋯ |
L(s) = 1 | + (0.0477 + 1.00i)2-s + (0.393 + 0.982i)3-s + (−0.00801 + 0.000765i)4-s + (0.0592 − 0.244i)5-s + (−0.966 + 0.441i)6-s + (0.895 − 0.445i)7-s + (0.141 + 0.985i)8-s + (−0.0863 + 0.0823i)9-s + (0.247 + 0.0477i)10-s + (−1.64 − 0.0785i)11-s + (−0.00390 − 0.00757i)12-s + (−0.884 − 0.766i)13-s + (0.489 + 0.876i)14-s + (0.263 − 0.0378i)15-s + (−0.989 + 0.190i)16-s + (0.485 − 0.682i)17-s + ⋯ |
Λ(s)=(=(161s/2ΓC(s)L(s)(−0.242−0.970i)Λ(2−s)
Λ(s)=(=(161s/2ΓC(s+1/2)L(s)(−0.242−0.970i)Λ(1−s)
Degree: |
2 |
Conductor: |
161
= 7⋅23
|
Sign: |
−0.242−0.970i
|
Analytic conductor: |
1.28559 |
Root analytic conductor: |
1.13383 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ161(103,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 161, ( :1/2), −0.242−0.970i)
|
Particular Values
L(1) |
≈ |
0.884964+1.13308i |
L(21) |
≈ |
0.884964+1.13308i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+(−2.36+1.17i)T |
| 23 | 1+(4.58+1.41i)T |
good | 2 | 1+(−0.0675−1.41i)T+(−1.99+0.190i)T2 |
| 3 | 1+(−0.681−1.70i)T+(−2.17+2.07i)T2 |
| 5 | 1+(−0.132+0.546i)T+(−4.44−2.29i)T2 |
| 11 | 1+(5.46+0.260i)T+(10.9+1.04i)T2 |
| 13 | 1+(3.18+2.76i)T+(1.85+12.8i)T2 |
| 17 | 1+(−2.00+2.81i)T+(−5.56−16.0i)T2 |
| 19 | 1+(2.51+3.53i)T+(−6.21+17.9i)T2 |
| 29 | 1+(−3.66−8.02i)T+(−18.9+21.9i)T2 |
| 31 | 1+(−2.37−3.01i)T+(−7.30+30.1i)T2 |
| 37 | 1+(1.88+1.97i)T+(−1.76+36.9i)T2 |
| 41 | 1+(0.322+1.09i)T+(−34.4+22.1i)T2 |
| 43 | 1+(−3.95−0.569i)T+(41.2+12.1i)T2 |
| 47 | 1+(9.85+5.69i)T+(23.5+40.7i)T2 |
| 53 | 1+(−4.73−1.63i)T+(41.6+32.7i)T2 |
| 59 | 1+(0.461−2.39i)T+(−54.7−21.9i)T2 |
| 61 | 1+(3.12+1.24i)T+(44.1+42.0i)T2 |
| 67 | 1+(5.57−10.8i)T+(−38.8−54.5i)T2 |
| 71 | 1+(6.13−3.94i)T+(29.4−64.5i)T2 |
| 73 | 1+(1.25+13.1i)T+(−71.6+13.8i)T2 |
| 79 | 1+(−2.77+0.959i)T+(62.0−48.8i)T2 |
| 83 | 1+(−11.4−3.35i)T+(69.8+44.8i)T2 |
| 89 | 1+(−9.02−7.09i)T+(20.9+86.4i)T2 |
| 97 | 1+(1.24−0.366i)T+(81.6−52.4i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.50140678152572218808977727334, −12.23531042059484455227786379877, −10.73589917224579451385847886764, −10.30905835791723701622715868606, −8.800914279748822747392873575792, −7.931472185085633391804651623982, −7.04513696475538352159784698452, −5.20539245090189676669917522761, −4.83346112697645214729260295520, −2.78957808754961203802807920378,
1.88391959859922651964723193619, 2.61265757931663118713140825385, 4.56237025493283408911495915496, 6.25731454680139484145647250272, 7.63066059838072223930144377719, 8.166363441420690044751665845414, 9.943604776348644704512322078893, 10.63262286199046345626799866890, 11.85475339008191312920890942153, 12.41634933788821775438486641752