L(s) = 1 | − 4.42·2-s + 3.10i·3-s + 11.5·4-s + 13.0·5-s − 13.7i·6-s + (12.3 + 13.8i)7-s − 15.8·8-s + 17.3·9-s − 57.7·10-s − 18.4i·11-s + 35.9i·12-s − 72.2i·13-s + (−54.4 − 61.2i)14-s + 40.5i·15-s − 22.4·16-s + 0.439·17-s + ⋯ |
L(s) = 1 | − 1.56·2-s + 0.597i·3-s + 1.44·4-s + 1.16·5-s − 0.935i·6-s + (0.664 + 0.747i)7-s − 0.700·8-s + 0.642·9-s − 1.82·10-s − 0.505i·11-s + 0.865i·12-s − 1.54i·13-s + (−1.03 − 1.16i)14-s + 0.697i·15-s − 0.351·16-s + 0.00627·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.922 - 0.387i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 161 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.922 - 0.387i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(1.09968 + 0.221508i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.09968 + 0.221508i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 7 | \( 1 + (-12.3 - 13.8i)T \) |
| 23 | \( 1 + (-35.6 + 104. i)T \) |
good | 2 | \( 1 + 4.42T + 8T^{2} \) |
| 3 | \( 1 - 3.10iT - 27T^{2} \) |
| 5 | \( 1 - 13.0T + 125T^{2} \) |
| 11 | \( 1 + 18.4iT - 1.33e3T^{2} \) |
| 13 | \( 1 + 72.2iT - 2.19e3T^{2} \) |
| 17 | \( 1 - 0.439T + 4.91e3T^{2} \) |
| 19 | \( 1 - 38.3T + 6.85e3T^{2} \) |
| 29 | \( 1 - 235.T + 2.43e4T^{2} \) |
| 31 | \( 1 - 84.9iT - 2.97e4T^{2} \) |
| 37 | \( 1 + 357. iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 147. iT - 6.89e4T^{2} \) |
| 43 | \( 1 - 44.0iT - 7.95e4T^{2} \) |
| 47 | \( 1 - 14.3iT - 1.03e5T^{2} \) |
| 53 | \( 1 - 141. iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 536. iT - 2.05e5T^{2} \) |
| 61 | \( 1 + 844.T + 2.26e5T^{2} \) |
| 67 | \( 1 - 683. iT - 3.00e5T^{2} \) |
| 71 | \( 1 - 468.T + 3.57e5T^{2} \) |
| 73 | \( 1 + 686. iT - 3.89e5T^{2} \) |
| 79 | \( 1 + 642. iT - 4.93e5T^{2} \) |
| 83 | \( 1 - 33.3T + 5.71e5T^{2} \) |
| 89 | \( 1 - 1.16e3T + 7.04e5T^{2} \) |
| 97 | \( 1 + 1.32e3T + 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.25107169123700841419739093176, −10.75049117340440668051896116626, −10.37886762586146325223721659958, −9.406272614777470113544037680930, −8.651018687932998857172800037969, −7.63269384335704893964693483512, −6.13860310515936850534962174302, −4.97364879205946976828963154300, −2.63278179665222208314291915268, −1.15038009066758158648320567670,
1.27280814964744971538494179801, 1.95279844626616693532581709342, 4.63823889722186169508188666212, 6.55308079898897870840652726300, 7.19604075586583803556929491720, 8.231703401083342400780730685079, 9.529034617413309614158682119323, 9.926550966479595961345185083904, 11.05117721966129895678086381301, 12.07606448552792014316590518111