L(s) = 1 | + (−2.44 + 4.23i)2-s + (3.42 + 5.92i)3-s + (−7.98 − 13.8i)4-s + (−9.57 + 16.5i)5-s − 33.4·6-s + (−17.5 + 5.98i)7-s + 38.9·8-s + (−9.89 + 17.1i)9-s + (−46.8 − 81.1i)10-s + (27.4 + 47.5i)11-s + (54.5 − 94.5i)12-s + 53.1·13-s + (17.5 − 88.9i)14-s − 130.·15-s + (−31.5 + 54.5i)16-s + (−13.7 − 23.7i)17-s + ⋯ |
L(s) = 1 | + (−0.865 + 1.49i)2-s + (0.658 + 1.14i)3-s + (−0.997 − 1.72i)4-s + (−0.856 + 1.48i)5-s − 2.27·6-s + (−0.946 + 0.322i)7-s + 1.72·8-s + (−0.366 + 0.634i)9-s + (−1.48 − 2.56i)10-s + (0.751 + 1.30i)11-s + (1.31 − 2.27i)12-s + 1.13·13-s + (0.334 − 1.69i)14-s − 2.25·15-s + (−0.492 + 0.853i)16-s + (−0.195 − 0.339i)17-s + ⋯ |
Λ(s)=(=(161s/2ΓC(s)L(s)(0.382+0.924i)Λ(4−s)
Λ(s)=(=(161s/2ΓC(s+3/2)L(s)(0.382+0.924i)Λ(1−s)
Degree: |
2 |
Conductor: |
161
= 7⋅23
|
Sign: |
0.382+0.924i
|
Analytic conductor: |
9.49930 |
Root analytic conductor: |
3.08209 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ161(93,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 161, ( :3/2), 0.382+0.924i)
|
Particular Values
L(2) |
≈ |
0.687489−0.459614i |
L(21) |
≈ |
0.687489−0.459614i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+(17.5−5.98i)T |
| 23 | 1+(−11.5+19.9i)T |
good | 2 | 1+(2.44−4.23i)T+(−4−6.92i)T2 |
| 3 | 1+(−3.42−5.92i)T+(−13.5+23.3i)T2 |
| 5 | 1+(9.57−16.5i)T+(−62.5−108.i)T2 |
| 11 | 1+(−27.4−47.5i)T+(−665.5+1.15e3i)T2 |
| 13 | 1−53.1T+2.19e3T2 |
| 17 | 1+(13.7+23.7i)T+(−2.45e3+4.25e3i)T2 |
| 19 | 1+(43.6−75.6i)T+(−3.42e3−5.94e3i)T2 |
| 29 | 1−285.T+2.43e4T2 |
| 31 | 1+(−28.1−48.7i)T+(−1.48e4+2.57e4i)T2 |
| 37 | 1+(8.63−14.9i)T+(−2.53e4−4.38e4i)T2 |
| 41 | 1+11.3T+6.89e4T2 |
| 43 | 1+155.T+7.95e4T2 |
| 47 | 1+(67.9−117.i)T+(−5.19e4−8.99e4i)T2 |
| 53 | 1+(150.+261.i)T+(−7.44e4+1.28e5i)T2 |
| 59 | 1+(−85.7−148.i)T+(−1.02e5+1.77e5i)T2 |
| 61 | 1+(245.−424.i)T+(−1.13e5−1.96e5i)T2 |
| 67 | 1+(510.+884.i)T+(−1.50e5+2.60e5i)T2 |
| 71 | 1+32.0T+3.57e5T2 |
| 73 | 1+(−359.−622.i)T+(−1.94e5+3.36e5i)T2 |
| 79 | 1+(−549.+952.i)T+(−2.46e5−4.26e5i)T2 |
| 83 | 1+433.T+5.71e5T2 |
| 89 | 1+(3.26−5.65i)T+(−3.52e5−6.10e5i)T2 |
| 97 | 1−700.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.97646229583503327351944255517, −12.08768564262383500078905660378, −10.52129723771774873578026710410, −9.972874355222017008513426278837, −9.036291772860080062129189924180, −8.111572690322306569009070161900, −6.85210944572084519545884125895, −6.35850506033762738252124567631, −4.35963008619190097644236972209, −3.20879462030168729458170596729,
0.56391831399791762728735765070, 1.26764670287572808557546373062, 3.07327970147029831147329531047, 4.10589545057354926667568582039, 6.51590746299780301302324221933, 8.131790402057496220964752440258, 8.589707733135364975206433319248, 9.226566173866518862725235134617, 10.76476509944998198110456651233, 11.74613719181295690391649728970