L(s) = 1 | + (1.81 + 3.13i)2-s + (−0.112 + 0.195i)3-s + (−2.56 + 4.44i)4-s + (−1.55 − 2.69i)5-s − 0.817·6-s + (−8.28 + 16.5i)7-s + 10.3·8-s + (13.4 + 23.3i)9-s + (5.64 − 9.77i)10-s + (−13.6 + 23.6i)11-s + (−0.579 − 1.00i)12-s − 46.9·13-s + (−66.9 + 4.02i)14-s + 0.702·15-s + (39.3 + 68.1i)16-s + (−30.3 + 52.6i)17-s + ⋯ |
L(s) = 1 | + (0.640 + 1.10i)2-s + (−0.0217 + 0.0376i)3-s + (−0.320 + 0.555i)4-s + (−0.139 − 0.241i)5-s − 0.0556·6-s + (−0.447 + 0.894i)7-s + 0.459·8-s + (0.499 + 0.864i)9-s + (0.178 − 0.308i)10-s + (−0.374 + 0.648i)11-s + (−0.0139 − 0.0241i)12-s − 1.00·13-s + (−1.27 + 0.0769i)14-s + 0.0120·15-s + (0.614 + 1.06i)16-s + (−0.433 + 0.750i)17-s + ⋯ |
Λ(s)=(=(161s/2ΓC(s)L(s)(−0.864−0.502i)Λ(4−s)
Λ(s)=(=(161s/2ΓC(s+3/2)L(s)(−0.864−0.502i)Λ(1−s)
Degree: |
2 |
Conductor: |
161
= 7⋅23
|
Sign: |
−0.864−0.502i
|
Analytic conductor: |
9.49930 |
Root analytic conductor: |
3.08209 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ161(116,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 161, ( :3/2), −0.864−0.502i)
|
Particular Values
L(2) |
≈ |
0.529194+1.96199i |
L(21) |
≈ |
0.529194+1.96199i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 7 | 1+(8.28−16.5i)T |
| 23 | 1+(−11.5−19.9i)T |
good | 2 | 1+(−1.81−3.13i)T+(−4+6.92i)T2 |
| 3 | 1+(0.112−0.195i)T+(−13.5−23.3i)T2 |
| 5 | 1+(1.55+2.69i)T+(−62.5+108.i)T2 |
| 11 | 1+(13.6−23.6i)T+(−665.5−1.15e3i)T2 |
| 13 | 1+46.9T+2.19e3T2 |
| 17 | 1+(30.3−52.6i)T+(−2.45e3−4.25e3i)T2 |
| 19 | 1+(0.916+1.58i)T+(−3.42e3+5.94e3i)T2 |
| 29 | 1−115.T+2.43e4T2 |
| 31 | 1+(−32.9+57.0i)T+(−1.48e4−2.57e4i)T2 |
| 37 | 1+(4.26+7.38i)T+(−2.53e4+4.38e4i)T2 |
| 41 | 1−129.T+6.89e4T2 |
| 43 | 1−200.T+7.95e4T2 |
| 47 | 1+(−38.8−67.3i)T+(−5.19e4+8.99e4i)T2 |
| 53 | 1+(−14.2+24.6i)T+(−7.44e4−1.28e5i)T2 |
| 59 | 1+(25.6−44.3i)T+(−1.02e5−1.77e5i)T2 |
| 61 | 1+(−30.5−52.9i)T+(−1.13e5+1.96e5i)T2 |
| 67 | 1+(−8.64+14.9i)T+(−1.50e5−2.60e5i)T2 |
| 71 | 1−366.T+3.57e5T2 |
| 73 | 1+(−455.+788.i)T+(−1.94e5−3.36e5i)T2 |
| 79 | 1+(−611.−1.05e3i)T+(−2.46e5+4.26e5i)T2 |
| 83 | 1−825.T+5.71e5T2 |
| 89 | 1+(348.+604.i)T+(−3.52e5+6.10e5i)T2 |
| 97 | 1+658.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.87416676149259432609094433513, −12.33115433582182043296008821400, −10.73800243837981416363099749909, −9.753748314799284560336951920450, −8.349172650189480176984421210863, −7.42467980597244703581058791379, −6.37350196119753679946133759786, −5.20517564707635295621585456862, −4.41931712490504885616502861771, −2.27029702687444827053645783945,
0.792845145145772000889433210846, 2.74849234956810982933598187025, 3.76918875129613470907039213603, 4.91120153520309800844354696173, 6.70424173718109941940030815110, 7.59275909589948790080300945082, 9.348687653089069348374132590516, 10.28680381978303728249281129481, 11.07909636723422349360340240060, 12.08541874580112826017010394788