L(s) = 1 | − 5.65i·2-s − 32.0·4-s − 110. i·5-s + 326.·7-s + 181. i·8-s − 626.·10-s − 625. i·11-s − 2.02e3·13-s − 1.84e3i·14-s + 1.02e3·16-s − 4.12e3i·17-s + 1.21e4·19-s + 3.54e3i·20-s − 3.53e3·22-s − 2.14e4i·23-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.500·4-s − 0.885i·5-s + 0.951·7-s + 0.353i·8-s − 0.626·10-s − 0.470i·11-s − 0.923·13-s − 0.672i·14-s + 0.250·16-s − 0.839i·17-s + 1.77·19-s + 0.442i·20-s − 0.332·22-s − 1.76i·23-s + ⋯ |
Λ(s)=(=(162s/2ΓC(s)L(s)−Λ(7−s)
Λ(s)=(=(162s/2ΓC(s+3)L(s)−Λ(1−s)
Degree: |
2 |
Conductor: |
162
= 2⋅34
|
Sign: |
−1
|
Analytic conductor: |
37.2687 |
Root analytic conductor: |
6.10481 |
Motivic weight: |
6 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ162(161,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 162, ( :3), −1)
|
Particular Values
L(27) |
≈ |
1.472906966 |
L(21) |
≈ |
1.472906966 |
L(4) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+5.65iT |
| 3 | 1 |
good | 5 | 1+110.iT−1.56e4T2 |
| 7 | 1−326.T+1.17e5T2 |
| 11 | 1+625.iT−1.77e6T2 |
| 13 | 1+2.02e3T+4.82e6T2 |
| 17 | 1+4.12e3iT−2.41e7T2 |
| 19 | 1−1.21e4T+4.70e7T2 |
| 23 | 1+2.14e4iT−1.48e8T2 |
| 29 | 1−2.47e4iT−5.94e8T2 |
| 31 | 1+4.05e4T+8.87e8T2 |
| 37 | 1+3.00e4T+2.56e9T2 |
| 41 | 1−5.92e4iT−4.75e9T2 |
| 43 | 1+8.79e4T+6.32e9T2 |
| 47 | 1+1.29e5iT−1.07e10T2 |
| 53 | 1+1.65e5iT−2.21e10T2 |
| 59 | 1−5.32e4iT−4.21e10T2 |
| 61 | 1+2.66e5T+5.15e10T2 |
| 67 | 1+4.07e5T+9.04e10T2 |
| 71 | 1−1.86e5iT−1.28e11T2 |
| 73 | 1+2.42e5T+1.51e11T2 |
| 79 | 1+1.26e5T+2.43e11T2 |
| 83 | 1−6.89e4iT−3.26e11T2 |
| 89 | 1−4.13e5iT−4.96e11T2 |
| 97 | 1−9.78e5T+8.32e11T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.43931097440848842179517262966, −10.30383826747226196557663939531, −9.196081630002515322763283421803, −8.398997152021743380889055494441, −7.22634204834298859785296830750, −5.24901292799266953203470567938, −4.75386448346962458356244972214, −3.08819265673859249241345467081, −1.59575459026104394912794821570, −0.43685981030268812081377515006,
1.64968759588892319160617253438, 3.33990678986339634890996608692, 4.81934590504708385098520478609, 5.83674871636874586217008859408, 7.35464763393777658979514575014, 7.62735640825490909454941090713, 9.177044171455404847372426014928, 10.14043141109318585100238098880, 11.25920613367504847194209501960, 12.17951607101778170540382843210