Properties

Label 2-162-3.2-c6-0-20
Degree $2$
Conductor $162$
Sign $-1$
Analytic cond. $37.2687$
Root an. cond. $6.10481$
Motivic weight $6$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.65i·2-s − 32.0·4-s − 110. i·5-s + 326.·7-s + 181. i·8-s − 626.·10-s − 625. i·11-s − 2.02e3·13-s − 1.84e3i·14-s + 1.02e3·16-s − 4.12e3i·17-s + 1.21e4·19-s + 3.54e3i·20-s − 3.53e3·22-s − 2.14e4i·23-s + ⋯
L(s)  = 1  − 0.707i·2-s − 0.500·4-s − 0.885i·5-s + 0.951·7-s + 0.353i·8-s − 0.626·10-s − 0.470i·11-s − 0.923·13-s − 0.672i·14-s + 0.250·16-s − 0.839i·17-s + 1.77·19-s + 0.442i·20-s − 0.332·22-s − 1.76i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s+3) \, L(s)\cr =\mathstrut & -\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(162\)    =    \(2 \cdot 3^{4}\)
Sign: $-1$
Analytic conductor: \(37.2687\)
Root analytic conductor: \(6.10481\)
Motivic weight: \(6\)
Rational: no
Arithmetic: yes
Character: $\chi_{162} (161, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 162,\ (\ :3),\ -1)\)

Particular Values

\(L(\frac{7}{2})\) \(\approx\) \(1.472906966\)
\(L(\frac12)\) \(\approx\) \(1.472906966\)
\(L(4)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 5.65iT \)
3 \( 1 \)
good5 \( 1 + 110. iT - 1.56e4T^{2} \)
7 \( 1 - 326.T + 1.17e5T^{2} \)
11 \( 1 + 625. iT - 1.77e6T^{2} \)
13 \( 1 + 2.02e3T + 4.82e6T^{2} \)
17 \( 1 + 4.12e3iT - 2.41e7T^{2} \)
19 \( 1 - 1.21e4T + 4.70e7T^{2} \)
23 \( 1 + 2.14e4iT - 1.48e8T^{2} \)
29 \( 1 - 2.47e4iT - 5.94e8T^{2} \)
31 \( 1 + 4.05e4T + 8.87e8T^{2} \)
37 \( 1 + 3.00e4T + 2.56e9T^{2} \)
41 \( 1 - 5.92e4iT - 4.75e9T^{2} \)
43 \( 1 + 8.79e4T + 6.32e9T^{2} \)
47 \( 1 + 1.29e5iT - 1.07e10T^{2} \)
53 \( 1 + 1.65e5iT - 2.21e10T^{2} \)
59 \( 1 - 5.32e4iT - 4.21e10T^{2} \)
61 \( 1 + 2.66e5T + 5.15e10T^{2} \)
67 \( 1 + 4.07e5T + 9.04e10T^{2} \)
71 \( 1 - 1.86e5iT - 1.28e11T^{2} \)
73 \( 1 + 2.42e5T + 1.51e11T^{2} \)
79 \( 1 + 1.26e5T + 2.43e11T^{2} \)
83 \( 1 - 6.89e4iT - 3.26e11T^{2} \)
89 \( 1 - 4.13e5iT - 4.96e11T^{2} \)
97 \( 1 - 9.78e5T + 8.32e11T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.43931097440848842179517262966, −10.30383826747226196557663939531, −9.196081630002515322763283421803, −8.398997152021743380889055494441, −7.22634204834298859785296830750, −5.24901292799266953203470567938, −4.75386448346962458356244972214, −3.08819265673859249241345467081, −1.59575459026104394912794821570, −0.43685981030268812081377515006, 1.64968759588892319160617253438, 3.33990678986339634890996608692, 4.81934590504708385098520478609, 5.83674871636874586217008859408, 7.35464763393777658979514575014, 7.62735640825490909454941090713, 9.177044171455404847372426014928, 10.14043141109318585100238098880, 11.25920613367504847194209501960, 12.17951607101778170540382843210

Graph of the $Z$-function along the critical line