L(s) = 1 | + (−0.973 − 0.230i)2-s + (−1.13 − 1.30i)3-s + (0.893 + 0.448i)4-s + (−1.92 + 2.58i)5-s + (0.807 + 1.53i)6-s + (2.72 + 1.79i)7-s + (−0.766 − 0.642i)8-s + (−0.403 + 2.97i)9-s + (2.46 − 2.06i)10-s + (4.37 − 0.511i)11-s + (−0.432 − 1.67i)12-s + (0.873 − 2.91i)13-s + (−2.23 − 2.37i)14-s + (5.55 − 0.433i)15-s + (0.597 + 0.802i)16-s + (0.670 + 3.80i)17-s + ⋯ |
L(s) = 1 | + (−0.688 − 0.163i)2-s + (−0.657 − 0.753i)3-s + (0.446 + 0.224i)4-s + (−0.859 + 1.15i)5-s + (0.329 + 0.625i)6-s + (1.02 + 0.677i)7-s + (−0.270 − 0.227i)8-s + (−0.134 + 0.990i)9-s + (0.779 − 0.654i)10-s + (1.31 − 0.154i)11-s + (−0.124 − 0.484i)12-s + (0.242 − 0.809i)13-s + (−0.598 − 0.633i)14-s + (1.43 − 0.112i)15-s + (0.149 + 0.200i)16-s + (0.162 + 0.922i)17-s + ⋯ |
Λ(s)=(=(162s/2ΓC(s)L(s)(0.834−0.550i)Λ(2−s)
Λ(s)=(=(162s/2ΓC(s+1/2)L(s)(0.834−0.550i)Λ(1−s)
Degree: |
2 |
Conductor: |
162
= 2⋅34
|
Sign: |
0.834−0.550i
|
Analytic conductor: |
1.29357 |
Root analytic conductor: |
1.13735 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ162(97,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 162, ( :1/2), 0.834−0.550i)
|
Particular Values
L(1) |
≈ |
0.629751+0.189004i |
L(21) |
≈ |
0.629751+0.189004i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.973+0.230i)T |
| 3 | 1+(1.13+1.30i)T |
good | 5 | 1+(1.92−2.58i)T+(−1.43−4.78i)T2 |
| 7 | 1+(−2.72−1.79i)T+(2.77+6.42i)T2 |
| 11 | 1+(−4.37+0.511i)T+(10.7−2.53i)T2 |
| 13 | 1+(−0.873+2.91i)T+(−10.8−7.14i)T2 |
| 17 | 1+(−0.670−3.80i)T+(−15.9+5.81i)T2 |
| 19 | 1+(1.07−6.08i)T+(−17.8−6.49i)T2 |
| 23 | 1+(3.43−2.26i)T+(9.10−21.1i)T2 |
| 29 | 1+(−1.48+1.57i)T+(−1.68−28.9i)T2 |
| 31 | 1+(−0.405−6.97i)T+(−30.7+3.59i)T2 |
| 37 | 1+(3.18+1.15i)T+(28.3+23.7i)T2 |
| 41 | 1+(−2.37+0.562i)T+(36.6−18.4i)T2 |
| 43 | 1+(−3.68+8.54i)T+(−29.5−31.2i)T2 |
| 47 | 1+(−0.128+2.21i)T+(−46.6−5.45i)T2 |
| 53 | 1+(6.74+11.6i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−9.21−1.07i)T+(57.4+13.6i)T2 |
| 61 | 1+(8.22−4.13i)T+(36.4−48.9i)T2 |
| 67 | 1+(4.38+4.65i)T+(−3.89+66.8i)T2 |
| 71 | 1+(−2.09+1.75i)T+(12.3−69.9i)T2 |
| 73 | 1+(−7.71−6.47i)T+(12.6+71.8i)T2 |
| 79 | 1+(1.48+0.351i)T+(70.5+35.4i)T2 |
| 83 | 1+(−14.5−3.45i)T+(74.1+37.2i)T2 |
| 89 | 1+(0.592+0.497i)T+(15.4+87.6i)T2 |
| 97 | 1+(10.5+14.1i)T+(−27.8+92.9i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.34762095807382704915370374223, −11.88203097799997663578860300575, −11.04164800332481992531602993597, −10.32678102885848067009233368178, −8.462484017506098408465126600815, −7.87222060725401825529324771963, −6.75610903991072841814997549717, −5.74348817526571793127247446078, −3.66054125779842465569190063376, −1.76251259182315566239163584104,
0.957095999527916182398819869034, 4.21690935587045545352773285085, 4.75237399343772646762894790183, 6.47551262984263645970623208367, 7.70752229997943352951391801581, 8.896427705416939206806377705711, 9.469409211463314903979520540896, 11.00215723918750138022174000222, 11.53694145422163392914701211382, 12.26427628542444682166091758909