Properties

Label 2-162-81.16-c1-0-1
Degree 22
Conductor 162162
Sign 0.8340.550i0.834 - 0.550i
Analytic cond. 1.293571.29357
Root an. cond. 1.137351.13735
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.973 − 0.230i)2-s + (−1.13 − 1.30i)3-s + (0.893 + 0.448i)4-s + (−1.92 + 2.58i)5-s + (0.807 + 1.53i)6-s + (2.72 + 1.79i)7-s + (−0.766 − 0.642i)8-s + (−0.403 + 2.97i)9-s + (2.46 − 2.06i)10-s + (4.37 − 0.511i)11-s + (−0.432 − 1.67i)12-s + (0.873 − 2.91i)13-s + (−2.23 − 2.37i)14-s + (5.55 − 0.433i)15-s + (0.597 + 0.802i)16-s + (0.670 + 3.80i)17-s + ⋯
L(s)  = 1  + (−0.688 − 0.163i)2-s + (−0.657 − 0.753i)3-s + (0.446 + 0.224i)4-s + (−0.859 + 1.15i)5-s + (0.329 + 0.625i)6-s + (1.02 + 0.677i)7-s + (−0.270 − 0.227i)8-s + (−0.134 + 0.990i)9-s + (0.779 − 0.654i)10-s + (1.31 − 0.154i)11-s + (−0.124 − 0.484i)12-s + (0.242 − 0.809i)13-s + (−0.598 − 0.633i)14-s + (1.43 − 0.112i)15-s + (0.149 + 0.200i)16-s + (0.162 + 0.922i)17-s + ⋯

Functional equation

Λ(s)=(162s/2ΓC(s)L(s)=((0.8340.550i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.834 - 0.550i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(162s/2ΓC(s+1/2)L(s)=((0.8340.550i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 162 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.834 - 0.550i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 162162    =    2342 \cdot 3^{4}
Sign: 0.8340.550i0.834 - 0.550i
Analytic conductor: 1.293571.29357
Root analytic conductor: 1.137351.13735
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ162(97,)\chi_{162} (97, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 162, ( :1/2), 0.8340.550i)(2,\ 162,\ (\ :1/2),\ 0.834 - 0.550i)

Particular Values

L(1)L(1) \approx 0.629751+0.189004i0.629751 + 0.189004i
L(12)L(\frac12) \approx 0.629751+0.189004i0.629751 + 0.189004i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.973+0.230i)T 1 + (0.973 + 0.230i)T
3 1+(1.13+1.30i)T 1 + (1.13 + 1.30i)T
good5 1+(1.922.58i)T+(1.434.78i)T2 1 + (1.92 - 2.58i)T + (-1.43 - 4.78i)T^{2}
7 1+(2.721.79i)T+(2.77+6.42i)T2 1 + (-2.72 - 1.79i)T + (2.77 + 6.42i)T^{2}
11 1+(4.37+0.511i)T+(10.72.53i)T2 1 + (-4.37 + 0.511i)T + (10.7 - 2.53i)T^{2}
13 1+(0.873+2.91i)T+(10.87.14i)T2 1 + (-0.873 + 2.91i)T + (-10.8 - 7.14i)T^{2}
17 1+(0.6703.80i)T+(15.9+5.81i)T2 1 + (-0.670 - 3.80i)T + (-15.9 + 5.81i)T^{2}
19 1+(1.076.08i)T+(17.86.49i)T2 1 + (1.07 - 6.08i)T + (-17.8 - 6.49i)T^{2}
23 1+(3.432.26i)T+(9.1021.1i)T2 1 + (3.43 - 2.26i)T + (9.10 - 21.1i)T^{2}
29 1+(1.48+1.57i)T+(1.6828.9i)T2 1 + (-1.48 + 1.57i)T + (-1.68 - 28.9i)T^{2}
31 1+(0.4056.97i)T+(30.7+3.59i)T2 1 + (-0.405 - 6.97i)T + (-30.7 + 3.59i)T^{2}
37 1+(3.18+1.15i)T+(28.3+23.7i)T2 1 + (3.18 + 1.15i)T + (28.3 + 23.7i)T^{2}
41 1+(2.37+0.562i)T+(36.618.4i)T2 1 + (-2.37 + 0.562i)T + (36.6 - 18.4i)T^{2}
43 1+(3.68+8.54i)T+(29.531.2i)T2 1 + (-3.68 + 8.54i)T + (-29.5 - 31.2i)T^{2}
47 1+(0.128+2.21i)T+(46.65.45i)T2 1 + (-0.128 + 2.21i)T + (-46.6 - 5.45i)T^{2}
53 1+(6.74+11.6i)T+(26.5+45.8i)T2 1 + (6.74 + 11.6i)T + (-26.5 + 45.8i)T^{2}
59 1+(9.211.07i)T+(57.4+13.6i)T2 1 + (-9.21 - 1.07i)T + (57.4 + 13.6i)T^{2}
61 1+(8.224.13i)T+(36.448.9i)T2 1 + (8.22 - 4.13i)T + (36.4 - 48.9i)T^{2}
67 1+(4.38+4.65i)T+(3.89+66.8i)T2 1 + (4.38 + 4.65i)T + (-3.89 + 66.8i)T^{2}
71 1+(2.09+1.75i)T+(12.369.9i)T2 1 + (-2.09 + 1.75i)T + (12.3 - 69.9i)T^{2}
73 1+(7.716.47i)T+(12.6+71.8i)T2 1 + (-7.71 - 6.47i)T + (12.6 + 71.8i)T^{2}
79 1+(1.48+0.351i)T+(70.5+35.4i)T2 1 + (1.48 + 0.351i)T + (70.5 + 35.4i)T^{2}
83 1+(14.53.45i)T+(74.1+37.2i)T2 1 + (-14.5 - 3.45i)T + (74.1 + 37.2i)T^{2}
89 1+(0.592+0.497i)T+(15.4+87.6i)T2 1 + (0.592 + 0.497i)T + (15.4 + 87.6i)T^{2}
97 1+(10.5+14.1i)T+(27.8+92.9i)T2 1 + (10.5 + 14.1i)T + (-27.8 + 92.9i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−12.34762095807382704915370374223, −11.88203097799997663578860300575, −11.04164800332481992531602993597, −10.32678102885848067009233368178, −8.462484017506098408465126600815, −7.87222060725401825529324771963, −6.75610903991072841814997549717, −5.74348817526571793127247446078, −3.66054125779842465569190063376, −1.76251259182315566239163584104, 0.957095999527916182398819869034, 4.21690935587045545352773285085, 4.75237399343772646762894790183, 6.47551262984263645970623208367, 7.70752229997943352951391801581, 8.896427705416939206806377705711, 9.469409211463314903979520540896, 11.00215723918750138022174000222, 11.53694145422163392914701211382, 12.26427628542444682166091758909

Graph of the ZZ-function along the critical line