L(s) = 1 | + (0.973 − 0.230i)2-s + (1.70 − 0.290i)3-s + (0.893 − 0.448i)4-s + (0.537 + 0.721i)5-s + (1.59 − 0.676i)6-s + (−3.95 + 2.60i)7-s + (0.766 − 0.642i)8-s + (2.83 − 0.992i)9-s + (0.689 + 0.578i)10-s + (−4.21 − 0.492i)11-s + (1.39 − 1.02i)12-s + (−1.75 − 5.86i)13-s + (−3.24 + 3.44i)14-s + (1.12 + 1.07i)15-s + (0.597 − 0.802i)16-s + (−0.432 + 2.45i)17-s + ⋯ |
L(s) = 1 | + (0.688 − 0.163i)2-s + (0.985 − 0.167i)3-s + (0.446 − 0.224i)4-s + (0.240 + 0.322i)5-s + (0.650 − 0.276i)6-s + (−1.49 + 0.983i)7-s + (0.270 − 0.227i)8-s + (0.943 − 0.330i)9-s + (0.217 + 0.182i)10-s + (−1.26 − 0.148i)11-s + (0.402 − 0.296i)12-s + (−0.487 − 1.62i)13-s + (−0.868 + 0.920i)14-s + (0.291 + 0.277i)15-s + (0.149 − 0.200i)16-s + (−0.104 + 0.594i)17-s + ⋯ |
Λ(s)=(=(162s/2ΓC(s)L(s)(0.984+0.177i)Λ(2−s)
Λ(s)=(=(162s/2ΓC(s+1/2)L(s)(0.984+0.177i)Λ(1−s)
Degree: |
2 |
Conductor: |
162
= 2⋅34
|
Sign: |
0.984+0.177i
|
Analytic conductor: |
1.29357 |
Root analytic conductor: |
1.13735 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ162(157,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 162, ( :1/2), 0.984+0.177i)
|
Particular Values
L(1) |
≈ |
1.91919−0.171820i |
L(21) |
≈ |
1.91919−0.171820i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.973+0.230i)T |
| 3 | 1+(−1.70+0.290i)T |
good | 5 | 1+(−0.537−0.721i)T+(−1.43+4.78i)T2 |
| 7 | 1+(3.95−2.60i)T+(2.77−6.42i)T2 |
| 11 | 1+(4.21+0.492i)T+(10.7+2.53i)T2 |
| 13 | 1+(1.75+5.86i)T+(−10.8+7.14i)T2 |
| 17 | 1+(0.432−2.45i)T+(−15.9−5.81i)T2 |
| 19 | 1+(0.284+1.61i)T+(−17.8+6.49i)T2 |
| 23 | 1+(−6.35−4.17i)T+(9.10+21.1i)T2 |
| 29 | 1+(−2.09−2.21i)T+(−1.68+28.9i)T2 |
| 31 | 1+(0.107−1.84i)T+(−30.7−3.59i)T2 |
| 37 | 1+(8.42−3.06i)T+(28.3−23.7i)T2 |
| 41 | 1+(−5.04−1.19i)T+(36.6+18.4i)T2 |
| 43 | 1+(−1.06−2.46i)T+(−29.5+31.2i)T2 |
| 47 | 1+(−0.486−8.35i)T+(−46.6+5.45i)T2 |
| 53 | 1+(1.11−1.93i)T+(−26.5−45.8i)T2 |
| 59 | 1+(3.71−0.433i)T+(57.4−13.6i)T2 |
| 61 | 1+(−2.81−1.41i)T+(36.4+48.9i)T2 |
| 67 | 1+(−3.28+3.48i)T+(−3.89−66.8i)T2 |
| 71 | 1+(3.18+2.67i)T+(12.3+69.9i)T2 |
| 73 | 1+(−1.09+0.922i)T+(12.6−71.8i)T2 |
| 79 | 1+(5.03−1.19i)T+(70.5−35.4i)T2 |
| 83 | 1+(2.63−0.624i)T+(74.1−37.2i)T2 |
| 89 | 1+(−12.5+10.5i)T+(15.4−87.6i)T2 |
| 97 | 1+(−2.79+3.75i)T+(−27.8−92.9i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.79463850023032950976361596949, −12.52773176027738623641992322486, −10.63531137735042718010294738982, −9.922171153356912434171272250920, −8.777445811289761209946368885212, −7.54684454753043927427250536867, −6.34470074635749085602795074163, −5.20912162212214439184039484586, −3.10460446898260012657750010895, −2.76745412678928797247351510067,
2.54352155780279284700628637825, 3.80400254564471347820740126459, 4.95543185954429229297530967145, 6.76930066405254153411832754788, 7.35911102685172985824918700081, 8.923740243562694930650066007403, 9.802519275269370745863797597508, 10.71897108539107005664582091102, 12.39165404853972178686072889063, 13.19134611871119355281362995050