L(s) = 1 | + (−4.89 − 2.82i)2-s + (15.9 + 27.7i)4-s + (−180. + 104. i)5-s + (−2.09 + 3.63i)7-s − 181. i·8-s + 1.17e3·10-s + (−1.95e3 − 1.13e3i)11-s + (−1.42e3 − 2.45e3i)13-s + (20.5 − 11.8i)14-s + (−512. + 886. i)16-s − 1.96e3i·17-s − 281.·19-s + (−5.77e3 − 3.33e3i)20-s + (6.39e3 + 1.10e4i)22-s + (−1.45e4 + 8.37e3i)23-s + ⋯ |
L(s) = 1 | + (−0.612 − 0.353i)2-s + (0.249 + 0.433i)4-s + (−1.44 + 0.834i)5-s + (−0.00611 + 0.0105i)7-s − 0.353i·8-s + 1.17·10-s + (−1.47 − 0.849i)11-s + (−0.646 − 1.11i)13-s + (0.00749 − 0.00432i)14-s + (−0.125 + 0.216i)16-s − 0.400i·17-s − 0.0410·19-s + (−0.722 − 0.417i)20-s + (0.600 + 1.04i)22-s + (−1.19 + 0.688i)23-s + ⋯ |
Λ(s)=(=(162s/2ΓC(s)L(s)(0.996−0.0871i)Λ(7−s)
Λ(s)=(=(162s/2ΓC(s+3)L(s)(0.996−0.0871i)Λ(1−s)
Degree: |
2 |
Conductor: |
162
= 2⋅34
|
Sign: |
0.996−0.0871i
|
Analytic conductor: |
37.2687 |
Root analytic conductor: |
6.10481 |
Motivic weight: |
6 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ162(107,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 162, ( :3), 0.996−0.0871i)
|
Particular Values
L(27) |
≈ |
0.4822505961 |
L(21) |
≈ |
0.4822505961 |
L(4) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(4.89+2.82i)T |
| 3 | 1 |
good | 5 | 1+(180.−104.i)T+(7.81e3−1.35e4i)T2 |
| 7 | 1+(2.09−3.63i)T+(−5.88e4−1.01e5i)T2 |
| 11 | 1+(1.95e3+1.13e3i)T+(8.85e5+1.53e6i)T2 |
| 13 | 1+(1.42e3+2.45e3i)T+(−2.41e6+4.18e6i)T2 |
| 17 | 1+1.96e3iT−2.41e7T2 |
| 19 | 1+281.T+4.70e7T2 |
| 23 | 1+(1.45e4−8.37e3i)T+(7.40e7−1.28e8i)T2 |
| 29 | 1+(−3.21e4−1.85e4i)T+(2.97e8+5.15e8i)T2 |
| 31 | 1+(−1.23e4−2.13e4i)T+(−4.43e8+7.68e8i)T2 |
| 37 | 1+1.70e4T+2.56e9T2 |
| 41 | 1+(1.00e5−5.81e4i)T+(2.37e9−4.11e9i)T2 |
| 43 | 1+(−1.53e4+2.65e4i)T+(−3.16e9−5.47e9i)T2 |
| 47 | 1+(6.72e4+3.88e4i)T+(5.38e9+9.33e9i)T2 |
| 53 | 1+1.38e5iT−2.21e10T2 |
| 59 | 1+(−1.32e5+7.64e4i)T+(2.10e10−3.65e10i)T2 |
| 61 | 1+(−8.06e3+1.39e4i)T+(−2.57e10−4.46e10i)T2 |
| 67 | 1+(−2.37e5−4.11e5i)T+(−4.52e10+7.83e10i)T2 |
| 71 | 1−1.50e5iT−1.28e11T2 |
| 73 | 1−3.31e5T+1.51e11T2 |
| 79 | 1+(−4.48e5+7.76e5i)T+(−1.21e11−2.10e11i)T2 |
| 83 | 1+(−8.18e5−4.72e5i)T+(1.63e11+2.83e11i)T2 |
| 89 | 1+7.90e5iT−4.96e11T2 |
| 97 | 1+(6.96e5−1.20e6i)T+(−4.16e11−7.21e11i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.63172722478951559854310520425, −10.66503051696145987182701205252, −10.11635845462393577201045870143, −8.273561320062938590824129167710, −7.929694605775753604340303948545, −6.84333136132732226748401012423, −5.14841912713564858014791993336, −3.45681939014794562178648851978, −2.73196538470891222377130174115, −0.47457504687966383289599796479,
0.39241375109515108283754120049, 2.19924852971607551157292036424, 4.18627239404344035224339477731, 5.03651258072726456916882753466, 6.75213764551627432406953410065, 7.87040197781803990444301036326, 8.314667518564863423156928215001, 9.626269053975290131129138193692, 10.60327149322312741269621021667, 11.92340554756884448097137387681