L(s) = 1 | + (1.03 + 0.964i)2-s + (0.138 + 1.99i)4-s + i·5-s + 3.54i·7-s + (−1.78 + 2.19i)8-s + (−0.964 + 1.03i)10-s − 4.36·11-s + 4.76·13-s + (−3.42 + 3.66i)14-s + (−3.96 + 0.552i)16-s + 3.02i·17-s + 1.16i·19-s + (−1.99 + 0.138i)20-s + (−4.51 − 4.21i)22-s + 3.11·23-s + ⋯ |
L(s) = 1 | + (0.731 + 0.682i)2-s + (0.0692 + 0.997i)4-s + 0.447i·5-s + 1.34i·7-s + (−0.629 + 0.776i)8-s + (−0.305 + 0.326i)10-s − 1.31·11-s + 1.32·13-s + (−0.915 + 0.980i)14-s + (−0.990 + 0.138i)16-s + 0.732i·17-s + 0.266i·19-s + (−0.446 + 0.0309i)20-s + (−0.962 − 0.897i)22-s + 0.648·23-s + ⋯ |
Λ(s)=(=(1620s/2ΓC(s)L(s)(−0.997+0.0692i)Λ(2−s)
Λ(s)=(=(1620s/2ΓC(s+1/2)L(s)(−0.997+0.0692i)Λ(1−s)
Degree: |
2 |
Conductor: |
1620
= 22⋅34⋅5
|
Sign: |
−0.997+0.0692i
|
Analytic conductor: |
12.9357 |
Root analytic conductor: |
3.59663 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1620(971,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1620, ( :1/2), −0.997+0.0692i)
|
Particular Values
L(1) |
≈ |
1.969661598 |
L(21) |
≈ |
1.969661598 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.03−0.964i)T |
| 3 | 1 |
| 5 | 1−iT |
good | 7 | 1−3.54iT−7T2 |
| 11 | 1+4.36T+11T2 |
| 13 | 1−4.76T+13T2 |
| 17 | 1−3.02iT−17T2 |
| 19 | 1−1.16iT−19T2 |
| 23 | 1−3.11T+23T2 |
| 29 | 1+8.14iT−29T2 |
| 31 | 1+4.79iT−31T2 |
| 37 | 1+7.83T+37T2 |
| 41 | 1+4.61iT−41T2 |
| 43 | 1−8.70iT−43T2 |
| 47 | 1+8.13T+47T2 |
| 53 | 1−11.9iT−53T2 |
| 59 | 1−0.684T+59T2 |
| 61 | 1−10.5T+61T2 |
| 67 | 1−7.95iT−67T2 |
| 71 | 1+10.6T+71T2 |
| 73 | 1−9.41T+73T2 |
| 79 | 1−8.75iT−79T2 |
| 83 | 1−13.3T+83T2 |
| 89 | 1+4.93iT−89T2 |
| 97 | 1+6.64T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.677876455315487857402296480351, −8.604866152617798420754956887661, −8.242942436194401743760412922531, −7.38457759513873709482168109036, −6.22647109440790276516750513083, −5.87836288668472917435888961268, −5.08397359401234278439439191391, −3.94261860488014295140743007812, −2.98845601000050087076299265952, −2.17153761868542668190897646246,
0.57758421035527287809658599789, 1.66888108450421833263211336018, 3.14265467029319864242349880923, 3.73701674290961530434690049725, 4.96330049431419473957220535531, 5.21729442337423099493757813632, 6.58168035138344284954709411941, 7.17523572855155239703420545397, 8.294799699780709106929396387762, 9.083595364975923842008330159783