L(s) = 1 | + (1.03 + 0.964i)2-s + (0.138 + 1.99i)4-s + i·5-s + 3.54i·7-s + (−1.78 + 2.19i)8-s + (−0.964 + 1.03i)10-s − 4.36·11-s + 4.76·13-s + (−3.42 + 3.66i)14-s + (−3.96 + 0.552i)16-s + 3.02i·17-s + 1.16i·19-s + (−1.99 + 0.138i)20-s + (−4.51 − 4.21i)22-s + 3.11·23-s + ⋯ |
L(s) = 1 | + (0.731 + 0.682i)2-s + (0.0692 + 0.997i)4-s + 0.447i·5-s + 1.34i·7-s + (−0.629 + 0.776i)8-s + (−0.305 + 0.326i)10-s − 1.31·11-s + 1.32·13-s + (−0.915 + 0.980i)14-s + (−0.990 + 0.138i)16-s + 0.732i·17-s + 0.266i·19-s + (−0.446 + 0.0309i)20-s + (−0.962 − 0.897i)22-s + 0.648·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.997 + 0.0692i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.997 + 0.0692i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.969661598\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.969661598\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.03 - 0.964i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 - iT \) |
good | 7 | \( 1 - 3.54iT - 7T^{2} \) |
| 11 | \( 1 + 4.36T + 11T^{2} \) |
| 13 | \( 1 - 4.76T + 13T^{2} \) |
| 17 | \( 1 - 3.02iT - 17T^{2} \) |
| 19 | \( 1 - 1.16iT - 19T^{2} \) |
| 23 | \( 1 - 3.11T + 23T^{2} \) |
| 29 | \( 1 + 8.14iT - 29T^{2} \) |
| 31 | \( 1 + 4.79iT - 31T^{2} \) |
| 37 | \( 1 + 7.83T + 37T^{2} \) |
| 41 | \( 1 + 4.61iT - 41T^{2} \) |
| 43 | \( 1 - 8.70iT - 43T^{2} \) |
| 47 | \( 1 + 8.13T + 47T^{2} \) |
| 53 | \( 1 - 11.9iT - 53T^{2} \) |
| 59 | \( 1 - 0.684T + 59T^{2} \) |
| 61 | \( 1 - 10.5T + 61T^{2} \) |
| 67 | \( 1 - 7.95iT - 67T^{2} \) |
| 71 | \( 1 + 10.6T + 71T^{2} \) |
| 73 | \( 1 - 9.41T + 73T^{2} \) |
| 79 | \( 1 - 8.75iT - 79T^{2} \) |
| 83 | \( 1 - 13.3T + 83T^{2} \) |
| 89 | \( 1 + 4.93iT - 89T^{2} \) |
| 97 | \( 1 + 6.64T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.677876455315487857402296480351, −8.604866152617798420754956887661, −8.242942436194401743760412922531, −7.38457759513873709482168109036, −6.22647109440790276516750513083, −5.87836288668472917435888961268, −5.08397359401234278439439191391, −3.94261860488014295140743007812, −2.98845601000050087076299265952, −2.17153761868542668190897646246,
0.57758421035527287809658599789, 1.66888108450421833263211336018, 3.14265467029319864242349880923, 3.73701674290961530434690049725, 4.96330049431419473957220535531, 5.21729442337423099493757813632, 6.58168035138344284954709411941, 7.17523572855155239703420545397, 8.294799699780709106929396387762, 9.083595364975923842008330159783