L(s) = 1 | + (−0.863 + 1.12i)2-s + (−0.509 − 1.93i)4-s + i·5-s − 1.02i·7-s + (2.60 + 1.09i)8-s + (−1.12 − 0.863i)10-s + 3.69·11-s − 5.05·13-s + (1.15 + 0.889i)14-s + (−3.48 + 1.97i)16-s − 2.05i·17-s + 5.65i·19-s + (1.93 − 0.509i)20-s + (−3.19 + 4.14i)22-s − 0.311·23-s + ⋯ |
L(s) = 1 | + (−0.610 + 0.792i)2-s + (−0.254 − 0.967i)4-s + 0.447i·5-s − 0.389i·7-s + (0.921 + 0.388i)8-s + (−0.354 − 0.272i)10-s + 1.11·11-s − 1.40·13-s + (0.308 + 0.237i)14-s + (−0.870 + 0.492i)16-s − 0.497i·17-s + 1.29i·19-s + (0.432 − 0.113i)20-s + (−0.680 + 0.883i)22-s − 0.0648·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.254 - 0.967i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.254 - 0.967i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.043198599\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.043198599\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.863 - 1.12i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 - iT \) |
good | 7 | \( 1 + 1.02iT - 7T^{2} \) |
| 11 | \( 1 - 3.69T + 11T^{2} \) |
| 13 | \( 1 + 5.05T + 13T^{2} \) |
| 17 | \( 1 + 2.05iT - 17T^{2} \) |
| 19 | \( 1 - 5.65iT - 19T^{2} \) |
| 23 | \( 1 + 0.311T + 23T^{2} \) |
| 29 | \( 1 + 0.993iT - 29T^{2} \) |
| 31 | \( 1 - 4.07iT - 31T^{2} \) |
| 37 | \( 1 - 8.38T + 37T^{2} \) |
| 41 | \( 1 - 9.77iT - 41T^{2} \) |
| 43 | \( 1 + 4.84iT - 43T^{2} \) |
| 47 | \( 1 - 10.5T + 47T^{2} \) |
| 53 | \( 1 - 5.37iT - 53T^{2} \) |
| 59 | \( 1 - 8.13T + 59T^{2} \) |
| 61 | \( 1 + 14.3T + 61T^{2} \) |
| 67 | \( 1 + 4.45iT - 67T^{2} \) |
| 71 | \( 1 + 0.205T + 71T^{2} \) |
| 73 | \( 1 + 5.22T + 73T^{2} \) |
| 79 | \( 1 - 13.5iT - 79T^{2} \) |
| 83 | \( 1 - 0.215T + 83T^{2} \) |
| 89 | \( 1 - 18.2iT - 89T^{2} \) |
| 97 | \( 1 - 9.67T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.606681905790797471258943903424, −8.869346048243782881714094655694, −7.80039995834692550396522766322, −7.33842559863560164457958008494, −6.54337987275036420267536403243, −5.81089787004989659670208135949, −4.75875266948244679181416552354, −3.90418225475206203133438990772, −2.44804031173778593884265633574, −1.11275110502618587844751027128,
0.58394929382502434813287236119, 1.95301709869737359329816221267, 2.82427823336621879465514048792, 4.08280172098881164243859122259, 4.71252529594205768665233799416, 5.89657487011695640998634269536, 7.05694438625943167943857994721, 7.64335185635125781781609322072, 8.772148702532980127992478178552, 9.125295140179498081419768244892