Properties

Label 2-1620-12.11-c1-0-26
Degree 22
Conductor 16201620
Sign 0.2540.967i-0.254 - 0.967i
Analytic cond. 12.935712.9357
Root an. cond. 3.596633.59663
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.863 + 1.12i)2-s + (−0.509 − 1.93i)4-s + i·5-s − 1.02i·7-s + (2.60 + 1.09i)8-s + (−1.12 − 0.863i)10-s + 3.69·11-s − 5.05·13-s + (1.15 + 0.889i)14-s + (−3.48 + 1.97i)16-s − 2.05i·17-s + 5.65i·19-s + (1.93 − 0.509i)20-s + (−3.19 + 4.14i)22-s − 0.311·23-s + ⋯
L(s)  = 1  + (−0.610 + 0.792i)2-s + (−0.254 − 0.967i)4-s + 0.447i·5-s − 0.389i·7-s + (0.921 + 0.388i)8-s + (−0.354 − 0.272i)10-s + 1.11·11-s − 1.40·13-s + (0.308 + 0.237i)14-s + (−0.870 + 0.492i)16-s − 0.497i·17-s + 1.29i·19-s + (0.432 − 0.113i)20-s + (−0.680 + 0.883i)22-s − 0.0648·23-s + ⋯

Functional equation

Λ(s)=(1620s/2ΓC(s)L(s)=((0.2540.967i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.254 - 0.967i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(1620s/2ΓC(s+1/2)L(s)=((0.2540.967i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.254 - 0.967i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 16201620    =    223452^{2} \cdot 3^{4} \cdot 5
Sign: 0.2540.967i-0.254 - 0.967i
Analytic conductor: 12.935712.9357
Root analytic conductor: 3.596633.59663
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ1620(971,)\chi_{1620} (971, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 1620, ( :1/2), 0.2540.967i)(2,\ 1620,\ (\ :1/2),\ -0.254 - 0.967i)

Particular Values

L(1)L(1) \approx 1.0431985991.043198599
L(12)L(\frac12) \approx 1.0431985991.043198599
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(0.8631.12i)T 1 + (0.863 - 1.12i)T
3 1 1
5 1iT 1 - iT
good7 1+1.02iT7T2 1 + 1.02iT - 7T^{2}
11 13.69T+11T2 1 - 3.69T + 11T^{2}
13 1+5.05T+13T2 1 + 5.05T + 13T^{2}
17 1+2.05iT17T2 1 + 2.05iT - 17T^{2}
19 15.65iT19T2 1 - 5.65iT - 19T^{2}
23 1+0.311T+23T2 1 + 0.311T + 23T^{2}
29 1+0.993iT29T2 1 + 0.993iT - 29T^{2}
31 14.07iT31T2 1 - 4.07iT - 31T^{2}
37 18.38T+37T2 1 - 8.38T + 37T^{2}
41 19.77iT41T2 1 - 9.77iT - 41T^{2}
43 1+4.84iT43T2 1 + 4.84iT - 43T^{2}
47 110.5T+47T2 1 - 10.5T + 47T^{2}
53 15.37iT53T2 1 - 5.37iT - 53T^{2}
59 18.13T+59T2 1 - 8.13T + 59T^{2}
61 1+14.3T+61T2 1 + 14.3T + 61T^{2}
67 1+4.45iT67T2 1 + 4.45iT - 67T^{2}
71 1+0.205T+71T2 1 + 0.205T + 71T^{2}
73 1+5.22T+73T2 1 + 5.22T + 73T^{2}
79 113.5iT79T2 1 - 13.5iT - 79T^{2}
83 10.215T+83T2 1 - 0.215T + 83T^{2}
89 118.2iT89T2 1 - 18.2iT - 89T^{2}
97 19.67T+97T2 1 - 9.67T + 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.606681905790797471258943903424, −8.869346048243782881714094655694, −7.80039995834692550396522766322, −7.33842559863560164457958008494, −6.54337987275036420267536403243, −5.81089787004989659670208135949, −4.75875266948244679181416552354, −3.90418225475206203133438990772, −2.44804031173778593884265633574, −1.11275110502618587844751027128, 0.58394929382502434813287236119, 1.95301709869737359329816221267, 2.82427823336621879465514048792, 4.08280172098881164243859122259, 4.71252529594205768665233799416, 5.89657487011695640998634269536, 7.05694438625943167943857994721, 7.64335185635125781781609322072, 8.772148702532980127992478178552, 9.125295140179498081419768244892

Graph of the ZZ-function along the critical line