L(s) = 1 | + (−0.863 + 1.12i)2-s + (−0.509 − 1.93i)4-s + i·5-s − 1.02i·7-s + (2.60 + 1.09i)8-s + (−1.12 − 0.863i)10-s + 3.69·11-s − 5.05·13-s + (1.15 + 0.889i)14-s + (−3.48 + 1.97i)16-s − 2.05i·17-s + 5.65i·19-s + (1.93 − 0.509i)20-s + (−3.19 + 4.14i)22-s − 0.311·23-s + ⋯ |
L(s) = 1 | + (−0.610 + 0.792i)2-s + (−0.254 − 0.967i)4-s + 0.447i·5-s − 0.389i·7-s + (0.921 + 0.388i)8-s + (−0.354 − 0.272i)10-s + 1.11·11-s − 1.40·13-s + (0.308 + 0.237i)14-s + (−0.870 + 0.492i)16-s − 0.497i·17-s + 1.29i·19-s + (0.432 − 0.113i)20-s + (−0.680 + 0.883i)22-s − 0.0648·23-s + ⋯ |
Λ(s)=(=(1620s/2ΓC(s)L(s)(−0.254−0.967i)Λ(2−s)
Λ(s)=(=(1620s/2ΓC(s+1/2)L(s)(−0.254−0.967i)Λ(1−s)
Degree: |
2 |
Conductor: |
1620
= 22⋅34⋅5
|
Sign: |
−0.254−0.967i
|
Analytic conductor: |
12.9357 |
Root analytic conductor: |
3.59663 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1620(971,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1620, ( :1/2), −0.254−0.967i)
|
Particular Values
L(1) |
≈ |
1.043198599 |
L(21) |
≈ |
1.043198599 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.863−1.12i)T |
| 3 | 1 |
| 5 | 1−iT |
good | 7 | 1+1.02iT−7T2 |
| 11 | 1−3.69T+11T2 |
| 13 | 1+5.05T+13T2 |
| 17 | 1+2.05iT−17T2 |
| 19 | 1−5.65iT−19T2 |
| 23 | 1+0.311T+23T2 |
| 29 | 1+0.993iT−29T2 |
| 31 | 1−4.07iT−31T2 |
| 37 | 1−8.38T+37T2 |
| 41 | 1−9.77iT−41T2 |
| 43 | 1+4.84iT−43T2 |
| 47 | 1−10.5T+47T2 |
| 53 | 1−5.37iT−53T2 |
| 59 | 1−8.13T+59T2 |
| 61 | 1+14.3T+61T2 |
| 67 | 1+4.45iT−67T2 |
| 71 | 1+0.205T+71T2 |
| 73 | 1+5.22T+73T2 |
| 79 | 1−13.5iT−79T2 |
| 83 | 1−0.215T+83T2 |
| 89 | 1−18.2iT−89T2 |
| 97 | 1−9.67T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.606681905790797471258943903424, −8.869346048243782881714094655694, −7.80039995834692550396522766322, −7.33842559863560164457958008494, −6.54337987275036420267536403243, −5.81089787004989659670208135949, −4.75875266948244679181416552354, −3.90418225475206203133438990772, −2.44804031173778593884265633574, −1.11275110502618587844751027128,
0.58394929382502434813287236119, 1.95301709869737359329816221267, 2.82427823336621879465514048792, 4.08280172098881164243859122259, 4.71252529594205768665233799416, 5.89657487011695640998634269536, 7.05694438625943167943857994721, 7.64335185635125781781609322072, 8.772148702532980127992478178552, 9.125295140179498081419768244892