L(s) = 1 | + (−0.993 + 0.116i)2-s + (−0.0581 − 0.998i)3-s + (0.973 − 0.230i)4-s + (0.893 + 0.448i)5-s + (0.173 + 0.984i)6-s + (0.479 + 1.60i)7-s + (−0.939 + 0.342i)8-s + (−0.993 + 0.116i)9-s + (−0.939 − 0.342i)10-s + (−0.286 − 0.957i)12-s + (−0.661 − 1.53i)14-s + (0.396 − 0.918i)15-s + (0.893 − 0.448i)16-s + (0.973 − 0.230i)18-s + (0.973 + 0.230i)20-s + (1.57 − 0.571i)21-s + ⋯ |
L(s) = 1 | + (−0.993 + 0.116i)2-s + (−0.0581 − 0.998i)3-s + (0.973 − 0.230i)4-s + (0.893 + 0.448i)5-s + (0.173 + 0.984i)6-s + (0.479 + 1.60i)7-s + (−0.939 + 0.342i)8-s + (−0.993 + 0.116i)9-s + (−0.939 − 0.342i)10-s + (−0.286 − 0.957i)12-s + (−0.661 − 1.53i)14-s + (0.396 − 0.918i)15-s + (0.893 − 0.448i)16-s + (0.973 − 0.230i)18-s + (0.973 + 0.230i)20-s + (1.57 − 0.571i)21-s + ⋯ |
Λ(s)=(=(1620s/2ΓC(s)L(s)(0.925−0.378i)Λ(1−s)
Λ(s)=(=(1620s/2ΓC(s)L(s)(0.925−0.378i)Λ(1−s)
Degree: |
2 |
Conductor: |
1620
= 22⋅34⋅5
|
Sign: |
0.925−0.378i
|
Analytic conductor: |
0.808485 |
Root analytic conductor: |
0.899158 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1620(1519,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1620, ( :0), 0.925−0.378i)
|
Particular Values
L(21) |
≈ |
0.8387719167 |
L(21) |
≈ |
0.8387719167 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.993−0.116i)T |
| 3 | 1+(0.0581+0.998i)T |
| 5 | 1+(−0.893−0.448i)T |
good | 7 | 1+(−0.479−1.60i)T+(−0.835+0.549i)T2 |
| 11 | 1+(0.993+0.116i)T2 |
| 13 | 1+(0.286+0.957i)T2 |
| 17 | 1+(−0.173+0.984i)T2 |
| 19 | 1+(−0.173−0.984i)T2 |
| 23 | 1+(−0.164+0.549i)T+(−0.835−0.549i)T2 |
| 29 | 1+(0.543−1.26i)T+(−0.686−0.727i)T2 |
| 31 | 1+(0.0581−0.998i)T2 |
| 37 | 1+(0.939−0.342i)T2 |
| 41 | 1+(1.18+0.138i)T+(0.973+0.230i)T2 |
| 43 | 1+(−1.57−1.03i)T+(0.396+0.918i)T2 |
| 47 | 1+(−1.36+1.44i)T+(−0.0581−0.998i)T2 |
| 53 | 1+(0.5−0.866i)T2 |
| 59 | 1+(0.993−0.116i)T2 |
| 61 | 1+(0.113+0.0268i)T+(0.893+0.448i)T2 |
| 67 | 1+(−0.313−0.727i)T+(−0.686+0.727i)T2 |
| 71 | 1+(−0.766−0.642i)T2 |
| 73 | 1+(−0.766+0.642i)T2 |
| 79 | 1+(−0.973+0.230i)T2 |
| 83 | 1+(1.18−0.138i)T+(0.973−0.230i)T2 |
| 89 | 1+(−1.86+0.679i)T+(0.766−0.642i)T2 |
| 97 | 1+(−0.597+0.802i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.288515830420581007252810186196, −8.866897027996998248081553287069, −8.190657214782065081332517978849, −7.22322072109484084811417718402, −6.56323847494876619928041096037, −5.73087478101002449731547211656, −5.32226192193410047024196593637, −2.97750638966527413938790887945, −2.30447945362343786712977226103, −1.52888332527984293629154593507,
0.976965450279633691849217498570, 2.30017651302046543405861657908, 3.61680962675085140229396312470, 4.44526357030582563300758680270, 5.49857881866288711541163620112, 6.34054731639104959735051972558, 7.38770941590066498154272597219, 8.066084132928010816223298114536, 9.034490373631036596082568588706, 9.549663450636930732467577529740