L(s) = 1 | + (−0.993 + 0.116i)2-s + (−0.0581 − 0.998i)3-s + (0.973 − 0.230i)4-s + (0.893 + 0.448i)5-s + (0.173 + 0.984i)6-s + (0.479 + 1.60i)7-s + (−0.939 + 0.342i)8-s + (−0.993 + 0.116i)9-s + (−0.939 − 0.342i)10-s + (−0.286 − 0.957i)12-s + (−0.661 − 1.53i)14-s + (0.396 − 0.918i)15-s + (0.893 − 0.448i)16-s + (0.973 − 0.230i)18-s + (0.973 + 0.230i)20-s + (1.57 − 0.571i)21-s + ⋯ |
L(s) = 1 | + (−0.993 + 0.116i)2-s + (−0.0581 − 0.998i)3-s + (0.973 − 0.230i)4-s + (0.893 + 0.448i)5-s + (0.173 + 0.984i)6-s + (0.479 + 1.60i)7-s + (−0.939 + 0.342i)8-s + (−0.993 + 0.116i)9-s + (−0.939 − 0.342i)10-s + (−0.286 − 0.957i)12-s + (−0.661 − 1.53i)14-s + (0.396 − 0.918i)15-s + (0.893 − 0.448i)16-s + (0.973 − 0.230i)18-s + (0.973 + 0.230i)20-s + (1.57 − 0.571i)21-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.925 - 0.378i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1620 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.925 - 0.378i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8387719167\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8387719167\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.993 - 0.116i)T \) |
| 3 | \( 1 + (0.0581 + 0.998i)T \) |
| 5 | \( 1 + (-0.893 - 0.448i)T \) |
good | 7 | \( 1 + (-0.479 - 1.60i)T + (-0.835 + 0.549i)T^{2} \) |
| 11 | \( 1 + (0.993 + 0.116i)T^{2} \) |
| 13 | \( 1 + (0.286 + 0.957i)T^{2} \) |
| 17 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 19 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 23 | \( 1 + (-0.164 + 0.549i)T + (-0.835 - 0.549i)T^{2} \) |
| 29 | \( 1 + (0.543 - 1.26i)T + (-0.686 - 0.727i)T^{2} \) |
| 31 | \( 1 + (0.0581 - 0.998i)T^{2} \) |
| 37 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 41 | \( 1 + (1.18 + 0.138i)T + (0.973 + 0.230i)T^{2} \) |
| 43 | \( 1 + (-1.57 - 1.03i)T + (0.396 + 0.918i)T^{2} \) |
| 47 | \( 1 + (-1.36 + 1.44i)T + (-0.0581 - 0.998i)T^{2} \) |
| 53 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (0.993 - 0.116i)T^{2} \) |
| 61 | \( 1 + (0.113 + 0.0268i)T + (0.893 + 0.448i)T^{2} \) |
| 67 | \( 1 + (-0.313 - 0.727i)T + (-0.686 + 0.727i)T^{2} \) |
| 71 | \( 1 + (-0.766 - 0.642i)T^{2} \) |
| 73 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 79 | \( 1 + (-0.973 + 0.230i)T^{2} \) |
| 83 | \( 1 + (1.18 - 0.138i)T + (0.973 - 0.230i)T^{2} \) |
| 89 | \( 1 + (-1.86 + 0.679i)T + (0.766 - 0.642i)T^{2} \) |
| 97 | \( 1 + (-0.597 + 0.802i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.288515830420581007252810186196, −8.866897027996998248081553287069, −8.190657214782065081332517978849, −7.22322072109484084811417718402, −6.56323847494876619928041096037, −5.73087478101002449731547211656, −5.32226192193410047024196593637, −2.97750638966527413938790887945, −2.30447945362343786712977226103, −1.52888332527984293629154593507,
0.976965450279633691849217498570, 2.30017651302046543405861657908, 3.61680962675085140229396312470, 4.44526357030582563300758680270, 5.49857881866288711541163620112, 6.34054731639104959735051972558, 7.38770941590066498154272597219, 8.066084132928010816223298114536, 9.034490373631036596082568588706, 9.549663450636930732467577529740